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The paper describes the use of random fields and finite elements to assess the influence of porosity and
void size on the effective elastic stiffness of geomaterials. A finite element model is developed involving
‘‘tied freedoms’’ that allows analysis of an ideal block of materials leading to direct evaluation of the
effective Young’s modulus and Poisson’s ratio. The influence of block size and representative volume ele-
ments (RVE) are discussed. The use of random fields and Monte-Carlo simulations deliver a mean and
standard deviation of the elastic parameters that lead naturally to a probabilistic interpretation. The
methodology is extended to a foundation problem involving a footing on an elastic foundation containing
voids. The approach enables estimates to be made of the probability of excessive settlement.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The motivation for this work came from a study of foundations
resting on subsurface materials containing voids of variable porosity
and size (Griffiths et al., 2011a,b). Such sites may consist of a karst
topography, which is a special type of landscape and subsurface
characterized by the dissolution of soluble rocks, including lime-
stone and dolomite. Even if the expected porosity of the site can
be conservatively estimated, the location of the voids may be un-
known lending itself to a probabilistic analysis. In addition, two sites
with the same porosity may have quite different void sizes, where
one has numerous small voids, while the other, fewer large voids.
To facilitate modeling of boundary value problems, the goal of this
work is to determine the effective elastic parameters of such mate-
rials, where the effective values are defined as the Young’s modulus
and Poisson’s ratio (or shear and bulk modulus) that would have led
to the same response if the material had been homogeneous.

In this paper, we use the random finite element method (RFEM)
(e.g. Fenton and Griffiths, 2008) to examine the influence of voids
on the parameters of an elastic material. The method starts with a
conventional plane strain FE model of an elastic block of material,
after which a random field of values is generated taking account of
ll rights reserved.
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local averaging (e.g. Fenton and Vanmarcke, 1990) and mapped
onto the mesh. The goal of the study is to generate results giving
guidance on the mean and standard deviation of the effective
Young’s modulus and Poisson’s ratio as a function of porosity and
void size. The parametric studies reported in this paper also give
insight into the relationship between the representative volume
element (RVE) for a material containing voids and the number of
Monte-Carlo simulations needed to reach statistical convergence.

The void volume and size within the specimen is controlled
though parameters of the random field as will be explained in
the next two sections. Having established the statistical distribu-
tions of effective properties as mentioned above, the information
can then be applied to more practical boundary value problems.
Later in this paper, we consider the influence of voids on the settle-
ment of a strip footing, leading to estimates of the probability of
excessive settlement.

The behavior of a heterogeneous material with micro-structure,
consisting of varying properties has been studied by a number of
investigators. The goal is to obtain the effective or equivalent prop-
erties at the macro-scale. An important objective of micro-
mechanics is to link mechanical relations going from finer to coar-
ser length scales.

It is assumed that the stiffness parameters of the intact material
(e.g. E and t) are known, and the goal of the investigation then be-
comes one of assessing the macro-stiffness of the material when it
is interspersed with voids. A useful concept in this homogenization
aterials containing voids by random fields and finite elements. Int. J. Solids
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Nomenclature

A element area
B footing width
C settlement proportionality constant
E effective Young’s modulus
Ei effective Young’s modulus at the ith simulation
E0 Young’s modulus of intact material
Dx element width
Dy element height
L width and height of block
n porosity
P½�� probability
Q vertical force
x, y cartesian coordinates
Z random variable
zn/2 value of the standard normal variable
a dimensionless element size parameter
c variance reduction due to local averaging
rx normal stress in x direction
ry normal stress in y direction
rz normal stress in z direction
ex normal strain in x direction

ey normal strain in y direction
dx horizontal deformation
dy vertical deformation
dv vertical deformation in settlement analysis
dvi vertical deformation at the ith simulation
h spatial correlation length (dimensional)
H spatial correlation length (non-dimensional)
t effective Poisson’s ratio
lE=E0

mean of effective normalized Young’s modulus
rE=E0 standard deviation of effective normalized Young’s

modulus
l mean
lt mean of t
q correlation coefficient
r, r2 standard deviation, variance
r2
ðAÞ variance after local averaging

rt standard deviation of t
sx, sy difference between x and y coordinates of two points
U½�� standard normal cumulative distribution function
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process is the representative volume element or RVE. An RVE is an
element of the heterogeneous material that is large enough to cap-
ture the effective properties in a reproducible way. From a model-
ing point of view, the smallest RVE that can achieve this is of
particular interest (e.g. Liu, 2005).

The concept of the RVE was first introduced by Hill (1963), since
when there have been many numerical simulations developed and
applied to determine RVE size (e.g. Kulatilake, 1985; Kanit et al.,
2003; Ning et al., 2008; Esmaieli et al., 2010; Huang et al., submit-
ted for publication). Several theoretical models have also been
proposed for dealing with scale effects ranging from micro to
macro levels. The Differential Method (Roscoe, 1952) has been
one of the most effective and widely used methods. The Composite
Spheres Model (Hashin, 1962) considered only a single inclusion
and led to simple closed-form expressions. The Self Consistent
Method (Budiansky, 1965; Hill, 1965) and the Generalized Self
Consistent Method, formalized by Christensen and Lo (1979) in-
volved embedding an inclusion phase directly into an infinite med-
ium. Christensen and Lo (1979) explained that the final form of this
method can solve the spherical inclusion problem. Finally, the Mori
and Tanaka (1973) method as described by Benveniste (1987) has
attracted a lot of interest and involves quite complex manipula-
tions of the field variables along with special concepts of strain
and stress. Although there are many analytical models for estimat-
ing the effective elastic properties of a material containing voids,
they are often limited to voids with simple shapes. See also the
review of Klusemann and Svendsen (2009).

Numerical methods such as the finite element method (FEM) or
the boundary element method (BEM) have been used to validate
some of the theoretical approaches. Two major variables can be
investigated in a realistic representation of a defective material;
namely the volume and size of the voids or inclusions. Isida and
Igawa (1991) considered several kinds of periodic arrays of holes,
while Day et al. (1992) considered a material containing circular
holes within a triangular or hexagonal matrix and occasionally
over-lapping random circular holes. Hu et al. (2000) developed a
numerical model based on BEM to estimate effective elastic
properties such as Young’s modulus, bulk modulus and shear
Please cite this article in press as: Griffiths, D.V., et al. Homogenization of geom
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modulus. The main objective was to investigate the influence of
the shortest distance between holes of random size and volume
based on a normal distribution. Cosmi (2004) introduced a new
numerical model called the Cell Method (CM) to investigate the ef-
fect of randomly located voids. The model consisted of a homoge-
neous matrix of cells which contains randomly located voids. Li
et al. (2010) developed an FEM model to calculate the elastic prop-
erties of porous materials with randomly distributed voids.
2. Finite element model

Assuming consistent units, the initial finite element mesh for
this study (e.g. Smith and Griffiths, 2004) considers a square plane
strain block of material modeled by 50 � 50 8-node square ele-
ments of unit side length (Dx = Dy = 1) as shown in Fig. 1. The
boundary conditions allow vertical movement only of nodes on
the left side, horizontal movement only of nodes on the bottom
side, with the bottom-left corner node fixed. The vertical compo-
nents of all nodal freedoms on the top loaded side are ‘‘tied’’, as
are the horizontal components of all nodal freedoms on the right
side. Tied freedoms are forced to move by the same amount in
the analysis because they are assigned the same freedom number
during stiffness assembly. The tied freedom approach offers an ele-
gant way of modeling a heterogeneous medium as an ideal ele-
ment of material. The tied freedom approach ensures that the
square deforms into a rectangle. Other methods employing stress
or strain control may give similar outcomes, but the proposed tied
freedom approach, while resulting in neither uniform stresses nor
strains within the block, allows an exact back-calculation of equiv-
alent elastic parameters as will be described.

A vertical force shown as Q = 50 in the figure is applied to the
tied vertical freedom on the top of the square imposing an average
unit vertical pressure of Q/L = 1. The boundary conditions ensure
that no matter what degree of heterogeneity is introduced, such
as, for example, the darker regions in Fig. 1 indicating voids, the
mesh will always deform as an ideal element with the top surface
remaining horizontal and the right side remaining vertical. From
aterials containing voids by random fields and finite elements. Int. J. Solids
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Fig. 1. Tied freedom model with random voids portrayed by the darker zones.
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these vertical and horizontal movements under the application of a
vertical pressure, the effective Young’s modulus and Poisson’s ratio
can be easily back-figured from linear elastic theory.

These specific boundary conditions enable more direct compar-
ison with experimental results, where displacements may be ap-
plied without friction on all sides of the specimen. It is
recognized that periodic boundary conditions are often used in
homogenization of heterogeneous media, but this is not necessary
unless the microstructures are also periodic (e.g. Garboczi and Day,
2005).

The finite element and random field software used in the cur-
rent work were adapted from the public-domain free software de-
scribed in the texts by Smith and Griffiths (2004)1 and Fenton and
Griffiths (2008).2
3. Local averaging

Input to the analysis consists of the target porosity n and spatial
correlation length h, with the latter offering some control over the
void size. A standard normal random variable Z (mean zero and
standard deviation of unity at the point level) is assigned to the
mesh, with each element receiving a constant value (i.e. there is
no variation assumed within an individual element). The spatial
correlation length h is the distance over which values of Z tend
to have similar values. The random field generation used in this pa-
per properly accounts for local averaging, which is to say that the
unit point variance of the random field is reduced as a function
of the ratio Dx/h prior to mapping onto the mesh. After local aver-
aging, the variance of the standard normal distribution actually
mapped onto the mesh will inevitably be less than unity.

In the current work, square elements have been used throughout
facilitating mapping of the locally averaged random field onto the
mesh (e.g. Fenton and Griffiths, 2008). A disadvantage of the uni-
form mesh discretization in boundary value problems is that the
mesh tends to be ‘‘over-refined’’ in some areas of the problem that
would typically be assigned larger elements. Saving are possible by
adopting different averaging scales (e.g. Der Kiureghian and Zhang,
1999), however this has not been implemented in the present work
1 www.mines.edu/�vgriffit/4th_ed.
2 www.mines.edu/�vgriffit/rfem.
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in the interests of simplicity. These efficiency considerations may
become essential in 3D analysis however, and is left for future work.

When dealing with a normal distribution, local averaging leaves
the mean (l) unchanged, but causes the variance (r2) to fall. The
larger the finite element size (Dx) relative to the spatial correlation
length (h), the greater the reduction in variance. A further consid-
eration is the nature of the correlation function, which models the
way in which the correlation (q) between values at any two points
in a random field reduces as they move further apart. In the current
work, a Markov spatial correlation function has been assumed gi-
ven by

q ¼ exp �2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x þ s2
y

q� �
ð1Þ

where sx and sy are, respectively, the differences between the x- and
y-coordinates of any two points. The variance reduction due to local
averaging is defined as

c ¼
r2
ðAÞ

r2 ð2Þ

where r2
ðAÞ is the locally averaged variance across the area (A) of the

finite element. It can be shown (Vanmarcke, 1984) that for a 2D iso-
tropic spatially correlation field acting over a square element of side
length

Dx ¼ Dy ¼ ah ð3Þ

the variance reduction factor is given by

c ¼ 4
a4

Z a

0

Z a

0
exp �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

pn o
ða� xÞða� yÞdxdy ð4Þ

which can be evaluated by numerical integration.
For example, a square element of side length h(a = 1) will result

in significant variance reduction due to local averaging from Eq. (4)
of c � 0.40. If the element is much smaller than h(a ? 0), there will
be virtually no variance reduction (c ? 1). Conversely, if the ele-
ment size is much bigger than h(a ?1), there will be very signif-
icant variance reduction (c ? 0). Clearly, modeling of small scales
of fluctuation will benefit from correspondingly refined finite ele-
ment meshes. In parametric studies performed in this paper,
a 6 0.2, so the maximum variance reduction due to local averaging
should be less than 20% (see e.g. Griffiths and Fenton, 2004).

4. Porosity model

Once the standard normal random field values have been as-
signed to the mesh, cumulative distribution tables (suitably digi-
tized in the software) are then used to estimate the value of the
standard normal variable zn/2 for which

Uðzn=2Þ �Uð0Þ ¼ n=2 ð5Þ

as shown in Fig. 2. Thereafter, any element assigned a random field
value in the range |Z| > zn/2 is treated as intact material with Young’s
modulus and Poisson’s ratio of E0 = 1 and t0 = 0.3, respectively, while
any element where |Z| 6 zn/2 is treated as a void element with an as-
signed Young’s modulus of E = 0.01 (100 times smaller than the sur-
rounding intact material). The Poisson’s ratio of the voids is
maintained at 0.3, although it has been shown that this value has lit-
tle influence on the statistics of the effective Young’s modulus.

5. Void size model

As mentioned previously, the random field spatial correlation
length h offers some quantitative control of void size. By changing
the value of h in the parametric studies, the degree to which void
elements with random values in the range |Z| 6 zn/2 tend to be clus-
tered together can be influenced. A small value of h will imply
aterials containing voids by random fields and finite elements. Int. J. Solids
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Fig. 2. Target porosity area in standard normal random field.
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fewer adjacent elements meeting the criterion at a given location,
and hence smaller and more frequent voids, while a large value of h
will imply larger and less frequent voids as shown in Fig. 3.

It should be emphasized that the nature of random fields is such
that it is only the average porosity that is under user control. The
porosity of each individual simulation such as those shown in
Fig. 3 throughout the Monte-Carlo process will vary. This is partic-
ularly noticeable when modeling random fields with higher spatial
correlation length, in which some individual simulations may dis-
play significantly higher or lower porosities than the target value.

In this paper, results have been expressed in terms of a dimen-
sionless spatial correlation length

H ¼ h
L

ð6Þ

where L is the width of the loaded block in Fig. 1.
6. Monte-Carlo simulations

A ‘‘Monte-Carlo’’ process means that analyses are repeated
numerous times until the statistical properties of the output
parameters become acceptably reproducible. In this work, each
Monte-Carlo simulation involves the generation of a random field
and void distribution as explained previously. This is followed by
an elastic analysis of the block such as that shown in Fig. 1. The pri-
mary outputs from each elastic analysis are the vertical and hori-
zontal deformations of the block, dy and dx, respectively.
Fig. 3. Typical simulations showing generation of voids at low

Please cite this article in press as: Griffiths, D.V., et al. Homogenization of geom
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Although each simulation is based on the same h and n, the spatial
location of the voids will be different each time, thus in some cases
the voids may occur just below the top of the block leading to a rel-
atively high dy while in others, the voids may be buried in the mid-
dle of the block leading to a relatively low dy.

Following each simulation, the computed displacements dy and
dx are converted into ‘‘effective’’ values of Young’s modulus and
Poisson’s ratio as follows.

From Hooke’s Law, where x and y represent respectively the
horizontal and vertical directions with z as the out-of-plane
direction:

ex ¼
1
E

rx � t ry þ rz
� �� �

ey ¼
1
E

ry � t rz þ rxð Þ
� � ð7Þ

Assuming plane strain conditions where ez = 0,

rz ¼ tðrx þ ryÞ ð8Þ

hence Eq. (7) can be written as

ex ¼
1
E

rx � t ry þ t rx þ ry
� �� �� �

ey ¼
1
E

ry � t t rx þ ry
� �

þ rx
� �� � ð9Þ

For the unconfined axially loaded unit square shown in Fig. 1,
ex = dx/L, ey = dy/L, rx = 0.0 and ry = Q/L, hence after substitution into
Eq. (9) and rearrangement

t ¼ dx

dx þ dy
ð10Þ

E ¼ Qð1� t2Þ
dy

ð11Þ

Each Monte-Carlo simulation leads to different block deforma-
tions dx and dy, and hence different values of Young’s modulus
and Poisson’s ratio from Eqs. (10), (11). The Young’s modulus E
computed at each simulation can be normalized as E/E0 by dividing
by the intact material Young’s modulus (E0 = 1).

7. Results of RFEM

The number of Monte-Carlo simulations needed to achieve rea-
sonably reproducible output statistics without excessive computa-
tional effort was studied by observing the value of the mean
effective Young’s modulus over an ever increasing number of sim-
ulations as shown in Fig. 4. Following this study, it was decided
and high spatial correlation lengths (n = 0.2 in both cases).

aterials containing voids by random fields and finite elements. Int. J. Solids
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Fig. 5. Mean effective stiffness vs. porosity.

Fig. 6. Standard deviation of effective stiffness vs. porosity.
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that 1000 simulations for each parametric combination would be a
reasonable compromise.

The mean and standard deviation of the normalized Young’s
modulus was computed for a range of parametric variations of n
and H, with results shown in Figs. 5 and 6, respectively. It was
noted that very similar plots to those shown in Fig. 5 would be ob-
tained if the shear or bulk modulus had been plotted instead of
Young’s modulus.

As might be expected from Fig. 5, the mean effective Young’s
modulus drops towards zero with increasing porosity n. It is also
apparent that H does not have much influence on lE=E0

. Fig. 6
shows that H has more influence on the standard deviation of
the effective Young’s modulus rE=E0 . The standard deviation curves
exhibit zero variance for n � 0 and n � 1 since these correspond,
respectively, to materials with essentially intact stiffness or zero
stiffness. As expected therefore, maxima occur in the standard
deviation plots at intermediate values of porosity (n � 0.3).

The mean and standard deviation of Poisson’s ratio for the same
parametric variations of n and H are shown in Figs. 7 and 8 respec-
tively. It can be noted from Fig. 7 that the mean Poisson’s ratio lt

remains quite constant with a small reduction at intermediate val-
ues of n. As shown in Fig. 8, the standard deviation of Poisson’s ra-
tio is quite small for all porosities, but again exhibits a maxima,
this time at around n � 0.5.

8. Computer resources and timings

All results presented in this paper were performed on a 50 � 50
mesh using an Intel Core i7-2600 CPU @ 3.40 GHz RAM: 8 GB lap-
top. Timings for 1000 Monte-Carlo simulations are shown in Fig. 9
for 2D meshes with up to 100 elements on each side (total number
of 10,000 elements). The CPU time for a 50 � 50 mesh was about
1.6 h, while a 100 � 100 mesh took 23.2 h. The results of sensitivity
studies with two different levels of mesh refinement are shown in
Figs. 10 and 11 for the case when H = 0.5. The results show a small
influence due to mesh refinement, however the difference does not
justify the additional computer time required for a comprehensive
parametric investigation with the finer mesh.

9. Comparison with other solutions

The current results using the H = 0.5 data from the block anal-
yses given in Fig. 5, are now compared with existing theoretical
and numerical approaches. From Fig. 12, it can be observed that
the current method tends to give lower values of the effective
Young’s modulus than the theoretical methods of Roscoe (1952),
Fig. 4. Influence of the number of simulations on the computed value of the mean
effective stiffness for n = 0.3 and H = 0.1. Runs repeated four times.

Fig. 7. Mean Poisson’s ratio vs. porosity.

Fig. 8. Standard deviation of Poisson’s ratio vs. porosity.
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Fig. 9. CPU timings for 1000 Monte-Carlo simulations for different element
refinements.

Fig. 10. Influence of mesh refinement on mean effective stiffness.

6 D.V. Griffiths et al. / International Journal of Solids and Structures xxx (2012) xxx–xxx
Mori and Tanaka (1973) and Christensen and Lo (1979) described
previously. Fig. 13 shows a comparison between the current meth-
od and numerical results of Isida and Igawa (1991) and Day et al.
(1992). Once more, the current method tends to give lower values
of the effective Young’s modulus for nearly all values of n.

The lower values generated by the RFEM results suggest that
the existing methods may be optimistic about the homogenized
stiffness. The reasons for the differences remain under investiga-
tion, but it should be noted that the current method includes con-
trol of void size through the random field spatial correlation length,
a feature that has not been properly accounted for in earlier work.

10. Representative volume element (RVE)

Although the block analyses presented earlier used a 50 � 50
block of material, it may be asked whether this can be considered
Fig. 11. Influence of mesh refinement on standard deviation of effective stiffness.
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a representative volume element (RVE). Is there a smaller block of
material that could also deliver an acceptable value of the effective
Young’s modulus? It may also be expected that a smaller block of
material containing voids will require more Monte-Carlo simula-
tions to achieve stable output than a larger block with the same
average void structure. Fig. 14 shows a sequence of blocks within
a parent block of 100 � 100 square elements of unit side length.
The 50 � 50 block considered earlier in this paper was a subset
of the parent block.

Tied freedom analyses on a range of block sizes were performed
on a material with n = 0.2 and h = 20 .The number of Monte-Carlo
simulations was maintained at 1000 in each case.

For the smallest 1 � 1 block model in which each block is the
size of a single element, the statistics as shown in Fig. 15 are gov-
erned by a Bernoulli process in which, lE=E0

¼ ð1� nÞ and
rE=E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞ

p
. For the case where n = 0.2, these become

lE=E0
¼ 0:8 and rE=E0 ¼ 0:4. As the block size increases, it can be

noted that the mean Young’s modulus falls rapidly at first and then
more gradually, and has become essentially constant for block
sizes P30 � 30. Similarly the standard deviation tends to zero as
the block size gets bigger. One could expect that if the block is large
enough, each simulation would give an almost identical result. This
effect is shown in Fig. 16 where the variation of mean Young’s
modulus is plotted against the number of Monte-Carlo simulations
corresponding to 20 � 20 and 50 � 50 blocks for three repeated
analyses.

For the smaller 20 � 20 block in Fig. 16(a) the effective Young’s
modulus takes at least 500 simulations to stabilize, while the larger
50 � 50 block in Fig. 16(b) settles down in around 100. As expected
from Fig. 16, the larger block gives a slightly smaller value of the
effective stiffness. The choice of the RVE should be put in the con-
text of the application being considered and the accuracy required.
It was also observed that material with voids based on larger spa-
tial correlation lengths required larger block sizes for convergence
within a given number of iterations. Since the results in this paper
indicate a second order influence of h on effective elastic proper-
ties, further results relating to h have not been included here.
11. Foundation settlement

The methodology described is now used to study the influence
of voids on the settlement of a strip footing using the mesh and
properties shown in Fig. 17.

The foundation sub-soil was modelled using 50 � 30 square
planar 8-node finite elements of unit side length with Young’s
modulus E0 = 50 MPa and Poisson’s ratio t = 0.3. The strip footing
at the ground surface had a width B = 10 m and was loaded with
a force of Q = 0.2 MN. The vertical and horizontal freedoms of the
21 nodes under the footing were tied, ensuring translational move-
ment only (no rotation), and is equivalent to a rough rigid inter-
face. For a uniform foundation with no voids, the computed
vertical displacement of dv = 0.0432 m was in good agreement with
independent solutions (e.g. Sudret and Der Kiureghian, 2000). It
may be noted that the vertical displacement of a rigid footing is
approximately the same as the average settlement of the centre
and edge of a flexible footing carrying the same total load (Davis
and Taylor, 1962; Poulos and Davis, 1974). From the uniform vali-
dation example and assuming a deterministic Poisson’s ratio, the
constant of proportionality relating the reciprocal of the effective
Young’s modulus to vertical footing displacement given by

dv ¼
C
E

ð12Þ

was found to be C = 2.16 MN/m.
aterials containing voids by random fields and finite elements. Int. J. Solids
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Fig. 12. Comparison of the mean effective Young’s modulus obtained from RFEM
and different theoretical models.

Fig. 13. Comparison of the mean effective Young’s modulus obtained from RFEM
and different numerical models.

Fig. 14. Different block sizes under consideration for estimating the effective elastic
properties of a material with random voids n = 0.2 and h = 20.

Fig. 15. Effective Young’s modulus (a) mean and (b) standard deviation following
1000 simulations for different block sizes.

Fig. 16. Comparison of the number of simulations for convergence with different
block sizes: (a) 20 � 20 and (b) 50 � 50 with n = 0.2 and h = 5.
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This constant was then used during Monte-Carlo simulations to
compute the effective Young’s modulus based on the vertical foot-
ing displacement dv i

using the relationship

Ei ¼
C
dv i

; i ¼ 1;2; . . . ;1000 ð13Þ

As in the block tests presented earlier, the spatial correlation
length did not make much difference to the mean effective stiff-
ness in the settlement analyses. In Fig. 18, the results from the set-
tlement and block analyses with 50 � 50 are compared for the case
of h = 10 m (or H = h/B = 1), and are in good agreement across a
range of porosities.
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Fig. 17. Loaded strip footing supported by a material with (a) n = 0 and (b) n = 0.2
and h = 5 m.

Fig. 18. Comparison of results from settlement and 50 � 50 RVE block analyses
with h = 10 m.

Fig. 19. Histogram of effective Young’s modulus values from a settlement analysis
following a suite of 1000 Monte-Carlo simulations together with a fitted normal
distribution. (n = 0.2,H = 1.0).
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12. Probabilistic interpretation

In order to make probabilistic interpretations from a Monte-
Carlo analysis, we can count the number of simulations that exceed
an allowable design value as a proportion of the total number of
simulations, and/or fit a probability density function to the data
as in Fig. 19. The histogram shown in the figure indicates the fre-
quency distribution of effective Young’s modulus values following
a suite of 1000 Monte-Carlo simulations of the footing settlement
problem. The smooth line is a fitted normal distribution based on
the computed mean and standard deviation values ðlE=E0

¼
0:426;rE=E0 ¼ 0:104Þ.

Let us assume that the design of a footing is inadequate if the
settlement exceeds some critical value corresponding to
E/E0 < 0.3. For the particular analysis shown in Fig. 19, there are
Please cite this article in press as: Griffiths, D.V., et al. Homogenization of geom
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116 simulations that satisfy this criterion, hence with 1000 simu-
lations we can conclude that P[E/E0 < 0.3] � 0.116. The normal
probability density function shown in Fig. 19 is seen to be a reason-
able fit to the data and can also be used to predict P[E/E0 < 0.3] as
follows:

Sample calculation:

(1) From Monte-Carlo simulations, lE=E0
¼ 0:426;rE=E0 ¼ 0:104.

(2) Probability of design ‘‘failure’’ P½E=E0<0:3�¼U ½0:3�0:426
0:104

��
11%

where U[.] is the standard cumulative distribution function.

The result is close to the result obtained by counting as expected,
namely that there is an 11% probability of excessive settlement.

13. Concluding remarks

The random finite element method (RFEM) shows promise as a
powerful alternative approach for modeling the mechanical influ-
ence of inclusions and voids in geomaterials. Inclusions are not re-
stricted to simple shapes as in some of the theoretical methods,
and the user can control the volume and size of inclusions through
changes to the spatial correlation length.

The RFEM together with Monte-Carlo simulations has been
used in this study to investigate the influence of porosity and void
size on the effective stiffness of geomaterials containing random
voids. A novel ‘‘tied freedom’’ approach has been used to model
an idealized block leading to predictions of the effective Young’s
modulus as a function of porosity and void size. It was observed
that while porosity had a significant effect on effective stiffness,
the void size was less important.

Results were presented demonstrating the influence of block
size and the number of Monte-Carlo simulations needed to achieve
stable results for a given level of porosity. As expected, more sim-
ulations were needed for smaller blocks, but the mean effective
stiffness converged quite rapidly as the block size increased while
the standard deviation tended to zero.

Finally, the paper presented some RFEM results relating to the
settlement of a strip footing resting on an elastic foundation
containing voids. It was demonstrated how these results could be
used to deliver probabilistic conclusions relating to foundation
settlement.
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