
ARTICLE

Landslide hazard assessment using digital elevation models
Gordon A. Fenton, Amanda McLean, Farrokh Nadim, and D.V. Griffiths

Abstract: Human beings are, in general, risk-averse and willing to go to great lengths to reduce failure consequences. However,
if the underlying issues are not understood, effective action cannot properly be taken. A landslide hazard assessment framework
capable of estimating regional probabilities of slope failure can be used to aid a vast number of communities currently living in
landslide “danger zones”. Such a frameworkwould provide a tool withwhich community resources can be optimized and ensure
that appropriate preparedness andmitigation strategies are in place. Maximum slope angles, as estimated using digital elevation
models (DEMs), are one of themost important indicators for landslide hazard assessment. This paper uses local averaging theory
to determine how the resolution of DEMs affects regional landslide probability estimates. Emphasis is on a regional landslide
hazard assessment, measured by the probability that one or more slopes of at least a critical minimum scale will fail within the
region.

Key words: regional landslide hazard assessment, digital elevationmodels (DEM), slope failure probability, slope stability, random
finite element method (RFEM).

Résumé : Les humains tentent généralement d’éviter les risques et sont prêts à prendre les actions nécessaires pour réduire les
conséquences des ruptures. Cependant, si les causes ne sont pas comprises, des actions efficaces ne peuvent pas être appliquées.
Un cadre d’évaluation du risque de glissement de terrain capable d’estimer les probabilités régionales d’une rupture de pente
peut être utile à un grand nombre de communautés qui vivent présentement dans des « zones de danger » de glissement de
terrain. Un tel cadre permettra d’offrir un outil avec lequel les ressources des communautés pourront être optimisées et qui
s’assurera d’une prévention adéquate et que les stratégies d’atténuation sont en place. Les angles maximaux des pentes, tels
qu’estimés à l’aide de modèles digitaux d’élévation (MDE), sont parmi les indicateurs les plus importants pour l’évaluation des
risques de glissement de terrain. Cet article se base sur la théorie des moyennes locales pour déterminer comment la résolution
des MDE affecte les estimations des probabilités de glissement de terrain à l’échelle régionale. L’emphase est placée sur une
évaluation du risque régional de glissement de terrain, mesuré par la probabilité qu’une ou plusieurs pentes d’au moins une
échelle critique minimum cèdent dans la région. [Traduit par la Rédaction]

Mots-clés : évaluation régionale du risque de glissement de terrain, modèle digital d’élévation (MDE), probabilité de rupture de
pente, stabilité de pente, méthode par éléments finis aléatoire (RFEM).

Introduction
Landslides are a common and devastating type of natural disas-

ter, often causing loss of life and irreparable damage. Given the
unstable nature of the natural environment, particularly after
humans have modified it, these geohazards are increasing in fre-
quency in many regions around the globe (Nadim et al. 2006).
Thus, there is a pressing need to improve techniques for landslide
risk management.

Landslide risk refers to the probability that a region will un-
dergo significant levels of damage from a landslide event — the
risk is a function of both hazard and vulnerability (UNDRO 1979;
Nadim et al. 2006). This study focuses on landslide hazard assess-
ment, where a hazard is defined as a slope failure leading to
negative human consequences. The hazard level is defined herein
as the probability that at least one slope, of sufficient size to lead
to negative human consequences, fails within the region under
consideration. The hazard level thus ranges from 0 (not possible)
to 1 (certain). It is recognized that the time span considered is also
intimately related to the assessed hazard level. For example, for a
given region, the landslide hazard level over a single daymight be
quite low but may become quite high if the time span is increased

to thousands of years. This paper does not directly consider the
time dependence of landslide risk — the time dependence shows
up in the parameters of the ground properties used to model the
slopes in the region. In other words, as the timespan considered
increases, the variability of the ground parameters also increases
(and (or) themean strength decreases). The nature of this increase
(decrease) is still very poorly understood and is beyond the
scope of this paper. It is assumed here that the users of this
framework will have some idea of the variability of the ground
properties over the timespan of interest within the region un-
der study.

Digital elevationmodels (DEM) are effective tools for estimating
slope instability levels because they can be used to predict the
regional distribution of maximum slope angles. Because the equi-
librium state of any terrain is a flat plane, the further a given
terrain is from a flat plane (i.e., the steeper the slope), the more
likely the terrain is to fail to achieve its equilibrium state. DEMs
use remote sensing techniques tomeasure surface elevations over
a series of adjacent areal domains (cells) and the data are stored in
a grid of cells. Themaximumslope angle can then be evaluated for
each cell using the average surface elevations provided for that
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cell in relation to its neighbouring cells. Many algorithms have
been implemented in the past to estimate maximum slope angles
from DEMs. For instance, Jones (1998) and Raaflaub and Collins
(2006) each identified and compared eight different DEM slope
calculation algorithms. This paper uses a second-order finite-
difference (i.e., using two points in each coordinate direction)
algorithm to estimatemaximum slope angles. Note that although
higher order approximations are available, the higher order poly-
nomials employed result in an artificial increase in the slope vari-
ance, which is undesirable.

Maximum slope angles derived from DEMs are referred to as
perceivedmaximum slope angles in this paper because their values
are dependent upon the resolution of the DEM. The DEM resolu-
tion introduces a scale issue because the DEM is averaging the
actual terrain over each DEM cell — the larger the DEM cell, the
greater the resulting terrain smoothing. Because smoothing
damps out the more frequent short steep slopes in favour of the
“average” longer and shallower slopes, maximum slope angles
derived from low resolution models will be underestimated. Max-
imum slope angles, as perceived by multiple DEM resolutions,
were examined by Chang and Tsai (1991) with cells ranging from
8 to 80 m in size, by Claessens et al. (2005) with cells from 10 to
100 m, by Deng et al. (2007) with cells from 5 to 480 m, and by
Chow and Hodgson (2009), on microscale terrain, with 2 to 10 m
cell dimensions. The results of each of these experiments indi-
cated that higher resolution models map more terrain variance
and steeper mean maximum slope angles than low resolution
models. However, whilemany of these papers allude to the impact
of DEM resolution on perceived maximum slope angles, they do
not present a theoretical way of quantifying this effect. This paper
provides such a way.

Nadim et al. (2006) examined this scaling issue inmore depth in
their study on landslide and avalanche hot spots. In their study,
Nadim et al. used two DEM resolutions to estimate slope angles
through multiple test regions (see also Jaedicke et al. 2010); a
lower resolution DEM was used above 60 °N latitude and a higher
resolution DEM was used below 60 °N latitude. In an attempt to
overcome the inconsistencies between the slope angles perceived
by each of these DEMs, Nadim et al. (2006) developed an approxi-
mate relationship between the DEM resolution (i.e., cell size) and
the resulting perceived slope angles. For example, areas with
slope angles estimated to be between 8° and 10° using the lower
resolution (larger cell) DEM were assigned the same hazard class
aswere areas having slope angles between 12° and 18° according to
the higher resolution (smaller cell) DEM. Nadim et al. thus provide
an empirical approach to relating slope failure risk to DEM reso-
lution. However, a more accurate theoretical-based calibration
techniquewould greatly improve theirmodel, which is the goal of
this paper.

Zhang et al. (1999) also derived a relationship between DEM
resolution and perceived maximum slope angles. They approached
this issue using a variogram technique, based on the assumption
that topography is, in general, fractal in nature (Peitgen and
Saupe 1988). Unfortunately, the fractal model tended to break
down in regions where the elevation changed rapidly and their
results suggested that for low resolution DEMs the fractal scal-
ing could significantly underestimate the regional probability
of slope failure in regions with rapidly changing terrain —
which are just the conditions that typically lead to high land-
slide risk.

In summary, it appears that little progress has been made to-
wards producing a landslide hazard assessment model that over-
comes the scaling issues associated with variable resolution
DEMs. This paper thus concentrates on the development of a
model that employs random field local averaging theory to eval-
uate regional landslide hazard levels at any resolution scale. The
remainder of the paper is basically divided into two parts; (i) a
proposed theoretical randomfieldmodel, and (ii) an example case

study to illustrate how the theoretical model is used to estimate
regional landslide hazard levels.

The proposed theoretical model, described in the next three
sections of the paper, combines the regional distribution of max-
imum slope angles (next section) with conditional slope failure
probabilities (following section) to obtain estimates of the re-
gional landslide hazard assessment (the subsequent section),
which is the overall goal of this paper. Other issues, such as prob-
abilities associated with landslide magnitude, are also discussed
for completeness.

The second part of the paper, appearing in the “Case study”
section, illustrates how the proposed theoretical model should be
applied to a particular region to assess its regional landslide haz-
ard.While the case study is based on a specific region near Chamo-
nix, France, with real DEM data, the case study is not based on real
geotechnical ground parameters obtained from a regional
geotechnical investigation. This means that the case study results
presented here should not be considered an actual landslide haz-
ard assessment for the case study region. In practice, the method-
ology presented in this paper should combine DEM datasets with
regional geotechnical investigations (or relevant engineering ex-
perience) to obtain a reasonable regional landslide hazard level
estimate. More details, along with a second case study and further
extensions to landslide vulnerability assessments, can be found in
McLean (2011).

Distribution of maximum slope angle
The elevationmeasured over a cell within a DEM approximately

represents the average elevation over the entire cell as perceived
by the satellite or airplane composing the DEM. If the DEM cell is
100 m × 100 m in size, then elevation variations within this do-
main having scale less than 100 mwill be smoothed over. In other
words, small slopes (e.g., of extent 10 m) will not be resolved by
this DEM even if the slope is extremely steep. Smaller DEM cells
result in an increase in the amount of data available to describe
the detailed topography of the terrain and thus the true slope
distribution.

As resolution increases, slope variability also increases. If the
natural terrain is studied at the microscale (e.g., at a scale much
less than 1 m), a very wide range in slopes will be observed and
many small-scale slope failures occur on a regular basis. Most of
these small-scale slope failures are of no interest, because they do
not result in observable or significant damage. In other words,
failure of a 1 m slope is of little concern, while failure of a 1000 m
slope is probably of significant concern. In general, there will be a
critical slope dimension that is at the lower bound of concern, and
this slope dimensionwill be referred to here as the “critical scale”.
The magnitude of the critical scale is selected by estimating the
minimum scale at which a single slope failure would be deemed
hazardous. As suggested earlier, the critical scale probably lies
somewhere between 1 and 1000 m.

Using local averaging theory, a relationship can be derived be-
tween the DEM resolution and the perceived maximum slope
angle distribution, making it possible to predict the distribution
of maximum slope angles as perceived at any DEM resolution.
This study is primarily concerned with landslide hazard analysis
at the critical scale and above.

In the following the critical scale will be assumed to be 10 m,
based purely on engineering judgement. In this section, the the-
ory relating DEM resolution tomaximum slope angle distribution
is presented, and this theory is then used to establish the maxi-
mum slope angle distribution at the critical scale. In turn, the
critical scale slope angle distribution can then be used to estimate
the regional landslide hazard level (see the “Regional landslide
hazard assessment” section).

Assuming that the average elevation over eachDEM cell, having
plan area Tx × Ty, is taken at the center of the cell (xT, yT) and that
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average elevations are recorded at regular intervals separated by
distance Tx and Ty in each coordinate direction, a DEM produces a
regular grid of adjacent locally averaged elevations, ZT(xT, yT). Fur-
thermore, if Z(x, y) is the actual surface elevation at surface loca-
tion (x, y), where x and y are coordinate axes that are assumed to be
aligned with the edges of the DEM and lie in the plane of the
surface, then the local average elevation, ZT(xT, yT) over a domain
of size Tx × Ty is given by

(1) ZT(xT, yT) �
1

TxTy
�
yT�Ty/2

yT�Ty/2 �
xT�Tx/2

xT�Tx/2
Z(s, r) ds dr

Based on the grid of locally averaged elevations provided by a
DEM, a grid of perceived slope angles, STx

and STy
, can be estimated

in each of the two coordinate directions, x and y, using the follow-
ing second-order finite-difference approximations,

(2a) STx(xT, yT) �
ZT(xT � Tx, yT) � ZT(xT � Tx, yT)

2Tx

(2b) STy(xT, yT) �
ZT(xT, yT � Ty) � ZT(xT, yT � Ty)

2Ty

where the averaging cell dimension is assumed to be Tx × Ty. These
equations must be modified for the cells along the edge of the
DEM. For example, STx

(xT, yT) = [ZT(xT, yT) − ZT(xT − Tx, yT)]/Tx along
the right edge of the region.

If it is assumed that each DEM cell represents a plane whose
center, (xT, yT), is at its average elevation, ZT(xT, yT), then the per-
ceived maximum slope angle of each cell can be estimated by using
simple geometry. Given the directional derivatives of eq. (2), the
maximum slope of the resulting plane is given by

(3) STm(xT, yT) � �STx
2 (xT, yT) � STy

2 (xT, yT)

It is assumed that landslides will occur in the direction having
maximum slope angle given by eq. (3). This is referred to as a
perceived maximum slope angle because the true slope is approx-
imated by locally averaged DEM measurements.

The distribution of the perceived maximum slope angles, STm
,

throughout a domain will follow a Rayleigh distribution if the
following conditions are met:

1. The slope angles (eq. (2)) in the x and y directions are indepen-
dent and identically normally distributed. This will generally
hold if the underlying elevation data are normally distributed
and the DEM cells are square (Tx = Ty).

2. The slope angles in the x and y directions have zeromeans (i.e.,
the average ground surface over the entire region considered
is flat).

It will be shown below that these conditions are approximately
met for the test region considered later in this paper, except for
the requirement that the DEM cells be square (because the test
region is well away from the equator). The cumulative distribu-
tion function of the Rayleigh distribution is given by

(4) Fs(s) � P[S ≤ s] � 1 � exp��
s2

2�ST
2 �

where �ST
is the standard deviation of the perceived slope

angles.

For numerical purposes, it is convenient to discretize the slope
angles into a sequence of disjoint ranges of the form

(5) si � [si�, si�)

where

(6a) si� � tan(di �
�d
2 )

(6b) si� � tan(di �
�d
2 )

and di = i�d is the slope angle in degrees. In this paper �d is taken
to be 1° and eq. (6) is used to define si− and si+ for i = 1, …, 89. For
i = 0, only the positive half of the range is considered;

(7) s0 � [0, tan(�d2 ))
so that s0− = 0 and s0+ = tan(�d/2). Vertical slopes, where di = 90°,
have been excluded from consideration because they cannot be
resolved by the DEM nor under local averaging (which is also true
of negative “overhanging” slopes). Thus, the sequence of slope
ranges starts from smin = s0 and increase up to smax = s89. Alterna-
tive discretization schemes can easily be considered simply by
changing the value of �d and the upper bound on i in the preced-
ing equations.

Hereinafter, the event (S = si) will be taken to mean that the
random slope angle, S, is an element of the range si, (i.e., that si− ≤
S < si+). In some cases, si is referred to as being a single slope angle,
rather than a range — for example, when the failure probability
of a slope with a given slope angle is being evaluated. In this case,
si is to be interpreted as being at the midpoint of its range (i.e.,
si = tan(di)), and it is assumed that the slope failure probability
remains constant over the actual range of si. As long as �d is
kept relatively small (e.g., 1°), this assumption will be reason-
ably valid.

Based on eqs. (4)–(7), the distribution of maximum slope angles
can be estimated as follows for i = 0, 1, …, 89;

(8) P[STm � si] � P[si� ≤ STm � si�] � FS(si�) � FS(si�)

� exp��
si�
2

2�ST
2 � � exp��

si�
2

2�ST
2 �

To evaluate eq. (8), the standard deviation of the slope angles, �ST
,

must be determined.
Stationarity, or statistical homogeneity, of Z(x, y) implies that its

mean, variance, and correlation structure are independent of po-
sition. In other words, the mean and variance are constant over
space and the correlation structure depends only on relative po-
sitions. In this research, stationarity has been assumed and under
this condition both STx

(x, y) and STy
(x, y) have zero mean and the

following variance (Fenton and Griffiths 2008):

(9) Var[STx] �
1

(2Tx)2
Var[ZT(x � Tx, y) � ZT(x � Tx, y)]

�
1

2Tx
2�E[ZT

2] � E[ZT(x � Tx, y)ZT(x � Tx, y)]�

Given the following identities:

(10) �ZT
2 � E[ZT

2] � E2[ZT]
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(11) �ZT
2 �ZT

(2T) � E[ZT(x � T, y)ZT(x � T, y)] � E2[ZT]

eq. (9) can be simplified to be

(12) �STx
2 �

�ZT
2

2Tx
2[1 � �ZT (2Tx)] �

�ZT
2

2Tx
2[1 � �Z (2Tx)]

where �ZT
represents the standard deviation of the observed ele-

vation data (i.e., at the DEM scale), E[ZT] represents the expected
value of ZT, and �ZT

(2T) represents the Gaussian two-dimensional
correlation function between the DEM local averages. A similar
set of equations exists for the variance of STy

, simply by substitut-
ing the subscript x with y.

In detail, �ZT
(2Tx) is the average of the correlation coefficient

between every pair of actual elevation points contained within
two DEM cells separated by central distance 2Tx (or 2Ty in the y
direction). This correlation was approximated in eq. (12) by assum-
ing that �ZT

(2Tx) � �Z (2Tx), where �Z is the correlation coefficient
between elevation points. In otherwords, the correlation between
local averages is approximated by the correlation between their
centers, leading to the right side of eq. (12). This is a reasonable
approximation if the actual correlation function does not vary too
rapidly around 2T, which is generally the case if the correlation
length is larger than the DEM cell size.

This research adopts a Gaussian correlation structure, rather
than the perhapsmore commonMarkovian correlation structure,
because the resulting random field is mean square differentiable,
meaning that its derivates (i.e., slopes) have finite variance.
Mean square differentiability simplifies the model mathemati-
cally by ensuring that the slope variance remains finite as the
averaging dimension decreases to zero, which is also physically
more realistic.

If Z(x, y) has a Gaussian correlation structure, its correlation
function, �Z(�x, �y), is as follows (see, e.g., Fenton and Griffiths
2008):

(13) �Z(�x, �y) � exp��	�� �x

Zx

�2 � � �y

Zy

�2	�
� exp��	� �x


Zx
�2	exp��	� �y


Zy
�2	

where �x and �y are the directional separation distances between
two points in the domain, and 
Zx

and 
Zy
are the directional cor-

relation lengths. The correlation length is used to describe the
degree of linear dependence between elevations. For example,
consider any two elevation points separated by distance �; as the
points are shifted around, if the elevation of one doubles, and the
elevation of the other tends to do so as well, then points separated
by distance � are strongly positively correlated. This typically oc-
curs when � is small (i.e., the points are close together). The cor-
relation length may be roughly viewed as the separation distance
beyond which the two points will be largely uncorrelated. Thus,
the smaller the correlation length, the more erratic the elevation
profile, as seen in a mountainous region (because of more inde-
pendence between elevations).

The correlation function given by eq. (13) is separable, and if

Zx

� 
Zy
� 
Z, then the correlation function is also isotropic.

Assuming isotropy holds, the correlation function simplifies as
follows:

(14) �Z(�x, �y) � exp��
	


Z
2(�x

2 � �y
2)	

Letting � � ��x
2��y

2 be the absolute distance between any two
points, the correlation function can be written as

(15) �Z(�) � exp��	� �

Z

�2	
which allows eq. (12) to be expressed as

(16) �ST
2 �

�ZT
2

2T2�1 � exp��	�2T
Z
�2	�

where T is either Tx or Ty and where 
Z is the correlation length
between elevation points, Z. The approximation in eq. (16) is be-
cause the correlation between local averages is approximated by
correlation between local average centers, as discussed earlier.
The two remaining unknowns in eq. (16), the correlation length,

Z, and the standard deviation of the locally averaged elevation
data (e.g., at the DEM or critical scales), �ZT

, can be determined
using local averaging theory alongwith data from twoDEMs (each
covering the same region).

According to local averaging theory (Vanmarcke 1984), a rela-
tionship exists between the standard deviation of the perceived
(locally averaged) elevation data, �ZT

, and the standard deviation
of the true elevation data, �Z,

(17) �ZT
2 � �Z

2�Z(Tx, Ty)

where �Z(Tx, Ty) is a variance reduction function describing the
amount that the variance is reduced when the elevation is aver-
aged over the cell domain, Tx × Ty. The value of �Z(Tx, Ty) decreases
from one to zero as Tx × Ty increases.

If Z(x, y) has a Gaussian correlation structure, as assumed, the
Gaussian variance function, �Z(Tx, Ty), can be expressed as follows
(Fenton and Griffiths 2008):

(18) �Z(Tx, Ty) �

Zx
2

	Tx
2�	Tx


Zx

erf��	Tx


Zx
� � exp��	Tx

2


Zx
2 � � 1	

×

Zy
2

	Ty
2�	Ty


Zy

erf��	Ty


Zy
� � exp��	Ty

2


Zy
2 � � 1	 � �Z(Tx)�Z(Ty)

Because the correlation function is separable and assumed iso-
tropic, the variance reduction function is also separable and iso-
tropic, and can be simplified to

(19) �Z(T, T) � �Z
2(T)

if Tx = Ty = T. The approximation T � �TxTy gives fairly good
variance reduction function results, in the event that Tx ≠ Ty, if the
correlation structure is approximately isotropic and if Tx and Ty do
not differ excessively (e.g., by more than about a factor of two). In
this case,

(20) �Z(T) �

Z
2

	T2�	T

Z

erf��	T

Z

� � exp��	T2


Z
2 � � 1	

Now let T1 represent the cell dimension of one of the DEMs, and
T2 the cell dimension of the other. If the cells are not square, the
approximation T1 = �TxTy can be used, as discussed earlier, and
similarly for T2. Each cell experiences some degree of local aver-
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aging, the extent of which is dependent upon the cell dimension
Ti, i = 1, 2, and the standard deviation of the cell elevation emerges
from eqs. (17), (19), and (20), as follows:

(21a) �ZT1
� �Z�Z(T1)

(21b) �ZT2
� �Z�Z(T2)

The values of �ZT1
and �ZT2

can be determined through a statisti-
cal analysis of each of the DEM datasets and then the point scale
standard deviation, �Z, can be eliminated by taking the ratio of
eqs. [21a] and [21b]. The resulting ratio can be used to solve itera-
tively for the point scale correlation length, 
Z, by finding 
Z,
which satisfies the following equation:

(22)
�ZT1

�ZT2

�
�Z(T1)
�Z(T2)

�

Z
2

	T1
2�	T1


Z
erf��	T1


Z
� � exp��	T1

2


Z
2 � � 1	

× � 
Z
2

	T2
2�	T2


Z
erf��	T2


Z
� � exp��	T2

2


Z
2 � � 1	��1

By substituting the resulting value of 
Z back into eq. (20), sep-
arately for each DEM (i.e., for T1 and T2), the values of �Z(T1) and
�Z(T2) can be determined. Then the following equation (which is
simply a rearrangement of eq. (17)) can be used to calculate the
point scale standard deviation of the elevation data, �Z,

(23) �Z �
�ZT

�Z(T)

using the values of �ZT
and �Z(T) at either DEM resolution (or using

an average of the two).
As previously discussed, the critical scale refers to the mini-

mum cell size at which a single slope failure is considered hazard-
ous. There is little value in considering cell sizes below the critical
scale because slope failures at those scales are not deemed to be
hazardous. The critical scale then is the scale that this study will
concentrate on as the most conservative indicator of regional
landslide hazard. As a result, eqs. (16) and (21) can be used to solve
for the standard deviation of the slope angles at the critical scale,
that is,

(24) �STcrit
�

�Z�Z(Tcrit)

Tcrit�2 
1 � exp��	�2Tcrit


Z
�2	

where Tcrit is selected based upon expert judgement andmay vary
from region to region. Returning to eq. (8), the distribution of
maximum slope angles can now be evaluated using the value of
�STcrit

, as estimated in eq. (24).

Conditional probability of slope failure
To assess the conditional probability of slope failure, given the

slope angle, the spatial variability of the ground strength in a
slope must be considered. One way of doing this is to model the
ground as a spatially varying random field and then use a finite
element analysis to determine whether realizations of the slope
fail or not. The resulting random finite element method devel-
oped by Fenton and Griffiths (2008) uses the site-specific soil prop-
erties (friction angle, dilation angle, cohesion, unit weight, elastic
modulus, and Poisson's ratio) and slope geometry to estimate the
probability of failure of a slope having a given slope angle. This
conditional probability of failure (for given slope angle) can be

estimated using the 2D stochastic slope stability analysis pro-
gram, Rslope2d, developed by Griffiths and Fenton (2000, 2004).
Rslope2d generates a randomfield of soil properties, assigns prop-
erty values to each element, applies gravity loading, andmonitors
the stress at all Gauss points. If there is excess stress at any
point, the program attempts to redistribute it to nearby points to
satisfy the maximum allowable stress limitations, as specified by
aMohr–Coulomb failure criterion. If, after amaximumnumber of
iterations, Rslope2d is not able to successfully redistribute the
stress, the slope is considered to have failed (Griffiths et al. 2009).
This overall approach is referred to as the random finite element
method (RFEM) because it combines elastoplastic finite element
analysis with a random field generator, simulated via the local
average subdivision method (Fenton and Vanmarcke 1990). By
varying the slope angle in Rslope2d, it is possible to observe the
relationship between the slope angle and the probability of slope
failure. Thus, the results of Rslope2d, when executed for various
slope angles, can be used to derive a relationship predicting the
probability of slope failure for any of the possible slope angles, si
(where si is interpreted here as being at the midpoint of its range).

The ground strength parameters used in the RFEM model
should be those that represent theminimum strength (because of
rainfall and (or) seismic events, for example) over the target life-
time of the risk assessment. These parameters will likely vary
throughout the region under analysis. Therefore, a range of soil
conditions should be considered spatially and the weakest values
expected to occur over time should be assumed at each spatial
point. For example, if a region were composed primarily of two
types of soil, Rslope2d would be implemented in two sets of prob-
abilistic analyses, one for each soil type over all possible slope
angles. The final conditional failure probability of a randomly
selected slope in the region would be a weighted average of these
two probability distributions, the weights being the relative pro-
portions of the two soil types in the region. In detail, for a region
composed of ns different soil types, the final slope failure proba-
bility would be given by the total probability theorem as

(25) P[F1|STm � si] � �
k�1

ns

pkrki

where F1 is the event that a single randomly selected slope fails, pk
is the proportion of the region having the kth soil type, and rki is
the failure probability of the kth soil type at the slope angle si, as
estimated by Rslope2d. Thus, the probability given by eq. (25) is
the conditional probability that a randomly selected slope having
slope angle si fails.

Regional landslide hazard assessment
Because a region is generally composed of many individual

slopes, the regional landslide hazard level here refers to the prob-
ability of one or more slopes failing in the region. Therefore,
attention should nowbe turned to calculating the probability of at
least one slope failure throughout an entire region of some areal
extent, At. If the area is large, then it will consist of possibly very
many separate slopes. For simplicity, assume that a typical slope
in the region has areal dimensions T × T. If this is so, then the
number of slopes having maximum slope angle, si, in the region
will be approximately

(26) ni � ntP[STm � si] � �At

T2�P[STm � si]

where nt = At/T2 is the total number of slopes in the region At. Note
that ni is actually random (having a binomial distribution), but is
taken to be equal to its mean in eq. (26) — hence the approxima-

624 Can. Geotech. J. Vol. 50, 2013

Published by NRC Research Press

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
D

A
L

H
O

U
SI

E
 U

N
IV

E
R

 o
n 

08
/1

5/
13

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



tion in eq. (26). This is a reasonable approximation because ni is
usually large and because P[STm � si] is generally estimated directly
from the region being studied.

Letting Nni
be the random number of slopes that fail out the ni

slopes having slope angle si, then the probability that one ormore
of these slopes fail is P[Nni

≥ 1]. As this probability increases, the
general landslide hazard level of the region will clearly also in-
crease. Assuming independence between the ni slopes, each hav-
ing slope angle si, and that the probability of slope failure is
P[F1�STm � si] (see eq. (25)), then the probability of at least one slope
failure from these slopes is given by

(27) P[Nni
≥ 1] � 1 � P[Nni

� 0] � 1 � qi
ni

where qi is the probability of nonfailure of a slope having slope
angle si,

(28) qi � 1 � P[F1|STm � si] � 1 � �
k�1

ns

pkrki

The assumption that slopes fail independently with constant
failure probability P[F1�STm � si] means that Nni

follows a binomial
distribution. Admittedly, the assumption of independence is
not particularly reasonable. For example, if an earthquake
strikes the region, it is more likely that several slopes will fail
simultaneously — the common cause being the earthquake. How-
ever, the assumption of independence is conservative, in the sense
that it leads to a higher probability of regional failure than if the
slope failures are positively correlated (i.e., if one fails, others
are more likely to fail). Thus, eq. (27) provides a conservative
measure of the landslide susceptibility over a region. It should
also be noted that this measure depends on the size of the
region, At. As At goes to infinity, the number of slopes involved
also goes to infinity, and the regional probability of slope fail-
ure goes to one (i.e., P[Nni

≥ 1] ¡ 1). This makes sense in that it is
to be expected that at least one slope failure will occur in very
large areas.

In summary, the regional landslide hazard level, pf, defined as
the probability of failure of at least one slope throughout the
region, At, can be computed using the total probability theorem
over the range of possible slope angles as

(29) pf � �
si�smin

smax

(1 � qi
ni)P[STm � si]

where ni is givenby eq. (26), qi is givenby eq. (28), and P[STm � si] is given
by eq. (8).

Landslide magnitude
By comparing the regional landslide hazard levels at various

resolutions, it is also possible to break the regional failure proba-
bility down by landslide magnitude. For example, eq. (29) may
predict a 50% regional failure probability of slopes of size T = 10m.
As the averaging dimension increases, small slopes are filtered
out in favour of larger slopes. In essence, an averaging domain of
size T = 100 m is effectively concentrating on slopes of dimension
100 m, the smaller slopes being averaged out.

As will be shown in the next section, the regional failure probabil-
ity decreases as the averaging dimension, T, increases. For example,
eq. (29)may predict a regional failure probability of 30% for slopes of
size T = 100 m while only 2% for slopes of size T = 1000 m. In other
words, the theory given earlier can be used to estimate the relative
likelihood of different sizes of landslides (e.g., 10 m slides versus
1000 m slides). Although not pursued in this paper, the pre-

sented relationship between landslide size and its probability of
occurrence allows for a more complete regional risk assessment in-
tegrating failure probabilities with failure consequences.

Case study
A 31 km × 48 km region in the Alps, near Chamonix, France, has

been selected to illustrate the regional landslide hazard assess-
ment methodology presented in this paper. The test site is com-
posed of mountainous terrain ranging from 459 to 4784 m in
elevation which has been previously mapped by two different
DEMs: (i) the global 30 arc-second elevation (GTOPO) model; and
(ii) the shuttle radar topography mission (SRTM) model with
3 arc-second resolution (see Table 1). There is a significant dif-
ference in level of detail perceived by these two models (see
Figs. 1 and 2). Note that the results of this paper do not depend
on the types of DEMs employed, as long as they have different
resolutions, because all DEMs involve some degree of local av-
eraging.

The GTOPO30 documentation (Gesch and Greenlee 1997) sug-
gests that the 90% confidence interval on absolute elevations de-
rived from the GTOPO model is ±30 m, but they go on to say that
the “relative accuracy is probably better than estimated absolute
accuracy” and it is the relative accuracy that is important for slope
computations. Similarly, the SRTM homepage (JPL 2009) suggests
that the 90% confidence interval on absolute elevations derived
from the SRTMmodel is ±5m, again with better relative accuracy.
For both models, it will be assumed here that the relative eleva-
tion errors are mean zero and not large enough to result in a
significant change to the slope angle distributions estimated from
the DEMs in this case study. It is believed that this is a reasonable
assumption.

Because of the spherical nature of the Earth, the size of a stan-
dard DEM cell is dependent upon its geographic coordinates
(Zhang et al. 1999). The dimensions can be computed using the
Haversine formula (Smith et al. 2007):

(30) T � 2rE arcsin
sin2��lat

2 � � cos(L1)cos(L2)sin
2��long

2 �
where rE is the radius of the Earth, which is approximately
6371 km (NIMA 2000), L1 and L2 are the latitudinal coordinates
on the Earth's surface of the cell edges, �lat is the difference
between the two latitudinal coordinates of the cell edges, and
�long is the difference between the two cell edge longitudinal
coordinates.

Because the test region is small in comparison to the Earth,
each cell is assumed to be the same size, relative to the central
cell. According to eq. (30), the GTOPO central cell dimensions
are Tx = 644.97 and Ty = 926.59, with an equivalent “square cell”
dimension of T1 = 773.06 m. The SRTM cell dimensions are Tx =
64.50 and Ty = 92.66 with an equivalent “square cell” dimension
of T2 = 77.31 m. Very similar dimensions are found for any cell
in the region, differing by no more than 0.1% from the central
cell.

Table 1. Digital elevation model measurement parameters.

GTOPO (T1) SRTM (T2)

Number of cells in x direction 48 470
Number of cells in y direction 52 514
Latitude of region's lower left corner (°) 45.683 33 45.683 33
Longitude of region's lower left corner (°) 6.675 00 6.681 67
Cell size = �lat = �long (°) 0.008 33 0.000 83
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Distribution of maximum slope angle
Based on a statistical analysis of the DEM elevation data pro-

vided for this case study, the following perceived standard devia-
tions are estimated: �ZT1

= 678.08 m and �ZT2
= 702.57 m (see Fig. 3).

As expected, the variance of the higher resolution model is larger

than the variance of the lower resolution model because its
smaller cells are less obscured by the effects of local averaging.

Equation (22), which employs local averaging theory, can now
be used with the values of �ZT1

and �ZT2
to solve for the point scale

correlation length of the elevation data,

Fig. 1. GTOPO coverage of test region (image courtesy of the Norwegian Geotechnical Institute) (644.97 m × 926.59 m cells).

Fig. 2. SRTM coverage of test region (image courtesy of the Norwegian Geotechnical Institute) (64.50 m × 92.66 m cells).
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(31)
678.08
702.57

�
�Z(T1)
�Z(T2)

� � 
Z
2

773.06	��773.06	

Z

erf�773.06�	

Z

� � exp��773.062	


Z
2 � � 1�
× �� 
Z

2

77.31	��77.31	
Z
erf�77.31�	


Z
� � exp��77.312	


Z
2 � � 1	��1

which gives 
z � 2917 m. This value of 
Z implies that, throughout
the region, elevation points separated bymore than 2917 m in the
plane are negligibly correlated with one another.

The point scale standard deviation of the elevation data, �Z, can
be evaluated by substituting the variance functions for each of the
DEMs (calculated with eq. (20)) into eq. (23) as follows:

(32a) �Z(T1) �
29172

773.062	�773.06	
2917

erf�773.06�	
2917 �

� exp��773.062	

29172 � � 1	 � 0.9648

(32b) �Z(T2) �
29172

77.312	�77.31	2917
erf�77.31�	

2917 �
� exp��77.312	

29172 � � 1	 � 0.9996

(33) �Z � �Z1
� �Z2

�
678.08
0.9648

�
702.57
0.9996

� 702.83 m

The standard deviation of the elevation data at the point scale is
higher than for each of the DEMs as it is unaffected by local
averaging.

Now that both the correlation length and standard deviation of
the elevation data have been estimated at the point scale, the
distribution of slope angles perceived at the critical scale can be
estimated. For this case study, a critical scale of 10 m has been
chosen arbitrarily, as discussed in the Introduction. Furthermore,

because the point scale correlation length (2917 m) is very much
larger than the scale under consideration (10 m), �(Tcrit) will be
very close to 1.0 so that it can be ignored in eq. (24). This gives,

(34) �STcrit
�

702.83

10�2 
1 � exp��	[2(10)2917]
2� � 0.603 932 � 0.604

Although the averaging dimension of the critical scale was cho-
sen arbitrarily, the dimension does not affect the resulting value
of�STcrit

verymuch. For example, if Tcrit were chosen to be a smaller
value (e.g., 1 m), then �STcrit

� 0.603 953, or a larger value (e.g.,
20 m), then �STcrit

� 0.603 865.
Equation (8) can now be used to determine the distribution of

perceived maximum slope angles at the critical scale,

(35) P[STmcrit
� si] � exp��

si�
2

2(0.604)2	 � exp��
si�
2

2(0.604)2	
where si− and si+ are defined by eq. (6).

Conditional probability of slope failure
To illustrate how to apply the proposed regional landslide haz-

ard assessment methodology, a relatively simple problem is con-
sidered where the soil types present in the test region have been
chosen arbitrarily as p1 = 20% fine-grained soils (soil type 1) and
p2 = 80% gravely sands (soil type 2). The values of the individual
ground strength parameters assumed are shown in Tables 2 and 3.

Fig. 3. Histograms of elevation data collected by the GTOPO and SRTM DEMs.
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The fact that only frictional soil types were considered was an
arbitrary decision, made purely to illustrate the theoretical
model, and so the results of this case study should not be consid-
ered to reflect the actual landslide hazard level of the region. The
methodology would apply for any ground types and any parame-
ter choicesmade in Tables 2 and 3, butwill give different results as
these parameters are changed.

Assuming that the ground strength parameters identified in
Tables 2 and 3 are representative of the ground over the region
being considered (at their resident proportions) the conditional
failure distribution, P[F1�STm � si], can be estimated by running
Rslope2d over a range of possible slope angles. The actual slope
geometries used in the Rslope2d model varied with the slope
angle.When the slope angle was s = 1.0 (45°), the slope height used
was 30 m (reducing for shallower slopes). The overall model
length in the horizontal direction when s = 1.0 was 130 m (includ-
ing head and toe regions). Because the estimated (and worst case)
correlation length between soil properties is generally some frac-
tion of the soil model dimension, the soil correlation length as-
sumed herewas 10% of the overall soilmodel length. Thus, the soil
correlation length in this case study was assumed to be 13 m and
isotropic. This is believed to be reasonably conservative. The
choice of a 30 m slope height, in the case where s = 1.0, was rather
arbitrary. However, because most slope angles perceived by the
higher resolution DEM (SRTM) are less than s = 0.5 m/m (as seen
later), a characteristic slope height for the SRTM should be less
than 0.5 × T2 = 0.5(77.3) = 38.7 m, if the assumption made earlier
that each slope has plan dimension T2 is deemed reasonable. Thus, a
30 m slope height was assumed to be reasonable for the determina-
tion of individual slope failure probabilities.

For each set of parameters of the two ground types considered
here, Rslope2d was run over a range of slope angles, si = tan(di), for
i = 0, 1, …, 89, to yield estimates of P[F1�S � si] and these probabil-
ities are plotted in Fig. 4. Not surprisingly, the slope failure prob-
ability increases from 0 to 1 as the slope angle increases.
Somewhat more surprising is the fact that the increase almost
exactly follows a suitably selected standard normal cumulative
distribution function,
.For cohesionless soils (as assumed here),
the probability of slope failure is equal to the probability that the

slope gradient exceeds the friction angle, so if the friction angle
distribution resembles a normal distribution, the failure proba-
bility will be closely normal. For the relatively small standard
deviations of the friction angle (relative to the means) assumed in
Tables 2 and 3, the friction angle distribution resembles a normal
distribution (although it is actually bounded). The fitted cumula-
tive normal distribution functions are also shown in Fig. 4. The fit
was made by trial and error for both the fine-grained (type 1) and
gravely soils (type 2) and are as follows:

(36a) r1i � 
�si � 0.505

0.025 �
(36b) r2i � 
�si � 0.874

0.035 �
where subscripts 1 and 2 refer to fine-grained soils and gravely
sands, respectively (see eq. (25)).

Regional landslide hazard assessment at critical scale
Using eqs. (28) and (29), the overall regional probability of slope

failure (i.e., regional landslide hazard level) at the critical scale can
be expressed as

(37) pf � �
si�smin

smax �1 � �1 � �
k�1

ns

pkrki�ni	P[STm � si]

where the values of rki are given by eq. (36), P[STm � si] is given by
eq. (35) (with Tm � Tmcrit

), and ni is given by eq. (26).
It is assumed that ns = 2, p1 = 0.2, p2 = 0.8 (see Tables 2 and 3), and

ni � ntP[STm � si], where nt = At/T2 and At = (64.50 × 470) × (92.66 ×
514) = 1.444 × 109 m2 (based on the SRTM DEM). This means that at
the critical scale where T = Tcrit = 10 m, the number of slopes at
each possible slope angle is ni = 1.444 × 107 P[STm � si] and so the
regional slope failure probability can be estimated at the critical
scale to be,

(38) pf � �
si�smin

smax �1 � �1 � 0.2
�si � 0.505

0.025 �
� 0.8
�si � 0.874

0.035 �	ni�P[STm � si] � 0.805

This value of pf implies that there is a 80.5% probability of at
least one slope of size Tcrit = 10 m (or greater) failing in the region.
Note the lack of time dependence in this estimate. The time de-
pendence is implicitly included in the ground strength parame-
ters listed in Tables 2 and 3, which are to be interpreted as being
the lowest strength values that will occur over the time duration
of interest (e.g., the next 100 years).

Regional landslide hazard assessment at DEM resolutions
The slope angle distributions derived from the two DEM data-

sets (using eqs. [2a] and [2b]) are plotted in Figs. 5 and 6. The
standard deviations of the slope angles are assumed to be equal in
each of the x and y directions (see the “Distribution of maximum
slope angle” section for details), so that �ST1

is taken as the average
of �ST1x

and �ST1y
(and similarly for �ST2

),

(39a) �ST1
�

�ST1x
� �ST1y

2
�

0.279 230 � 0.238 303
2

� 0.259

(39b) �ST2
�

�ST2x
� �ST2y

2
�

0.463 691 � 0.436 291
2

� 0.450

Table 2. Assumed ground strength parameters of fine-grained soils
(soil type 1).

Assumed values

Ground strength
parameters Mean

Standard
deviation

Distribution
type

Friction angle (°) 26 5 Bounded
Dilation angle (°) 0 0 Deterministic
Cohesion (kN) 0 0 Deterministic
Unit weight (kN/m3) 13 1.5 Lognormal
Elastic modulus (kPa) 20 000 15 000 Lognormal
Poisson's ratio 0.3 0 Deterministic

Table 3. Assumed ground strength parameters of gravely sands (soil
type 2).

Assumed values

Ground strength
parameters Mean

Standard
deviation

Distribution
type

Friction angle (°) 40 5 Bounded
Dilation angle (°) 0 0 Deterministic
Cohesion (kN) 0 0 Deterministic
Unit weight (kN/m3) 18 1 Lognormal
Elastic modulus (kPa) 125 000 75 000 Lognormal
Poisson's ratio 0.3 0 Deterministic
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Given the values of �ST1
and �ST2

, the distributions of maximum
slope angles, as perceived by each of the DEMs, can be determined
using eq. (8).

(40a) P[STm1
� si] � exp��

si�
2

2(0.259)2	 � exp��
si�
2

2(0.259)2	
(40b) P[STm2

� si] � exp��
si�
2

2(0.450)2	 � exp��
si�
2

2(0.450)2	
The slope failure probabilities rki (see eq. (36)) used for the crit-

ical scale analysis also apply to the DEM scale analyses. Therefore,
the regional landslide failure probabilities, as perceived at each of
the DEM resolutions, can be evaluated with eq. (37) by using the
appropriate distribution P[STm � si] and by modifying nt = (At/T2)
using T = T1 = 773.06 for the GTOPO scale or T = T2 = 77.31 for the
SRTM scale. This gives nt = 2416 for the GTOPO scale and 241 599
for the SRTM scale.

The final regional probabilities of slope failure, pf1 for the
GTOPO scale and pf2 for the SRTM scale, are found via eq. (37) to be

(41) pf1 � 0.201 and pf2 � 0.644

The slope angle probability distributions (see eqs. (8), (35), and
(40)) perceived at each of the three scales are shown in Fig. 7. The
figure clearly shows how both the mean and variance increase as
the resolution increases (i.e., as the averaging scale decreases).

The GTOPO DEM, which has the lowest resolution, estimates the
lowest regional probability of slope failure at about 20%. The SRTM
DEM, which is significantly more precise than the GTOPO DEM, es-
timates a much higher 64% regional probability of slope failure. In
comparison, the critical scale model estimates the highest failure
probability at 81%. Two conclusions can be drawn from these results.

First of all, these results suggest that it is moderately unlikely
that a slope greater than T1 = 773 m will fail (about 20%), but
moderately likely that a slope greater than T2 = 77.3 m will fail
(64%) and highly likely that a slope greater than 10mwill fail (81%).

Fig. 4. Conditional probability of failure plots for fine-grained soils and gravely sands.
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Fig. 5. Histogram of slope angles as perceived by the GTOPO DEM.
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Fig. 6. Histogram of slope angles as perceived by the SRTM DEM.
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This information can be used for detailed risk assessments that
consider the frequency versus consequences (how much damage
is expected to occur) for landslides of different sizes. For instance,
itmight be pragmatic to invest in contingency plans for landslides
up to (or even slightly larger than) roughly 500 m in scope. How-
ever, if resources are limited, itmay not be practical to prepare for
landslides larger than about 1000 m because they appear to be
unlikely to occur.

Secondly, low resolution DEMs generally underestimate land-
slide hazard levels as a result of local averaging. If more accurate
predictions of regional slope failure are not available (e.g., at the
critical scale), the unrealistically low landslide hazard levels esti-
mated by low resolution DEMs could result in inadequate levels of
landslide planning and preparation. The lowest resolution DEM
(GTOPO) used in this case study has very large cells and the per-
ceived slope angles, ST1, are significantly underestimated. The
slope angles, ST2, perceived by the SRTM DEM, and STcrit, estimated
at the critical scale, are also underestimated, but to lesser and
lesser degrees.

Concluding remarks
The landslide hazardmodel developed in this paper estimates the

probability, pf, of at least one slope failing in a region. The regional
slope failure probability estimate takes into account the distribution
of maximum slope angles and the conditional probabilities of slope
failures as a function of ground conditions. The probability, pf, is
used as a measure of the regional landslide hazard level.

Because there is only one elevation recorded for each DEM cell,
the ability of the recording to accurately reflect the nature of the
terrain is directly related to the cell size. The larger the cell, the
more local averaging takes place within the cell and the less ac-
curate the representation of the terrain's true roughness. Typi-
cally, steep slopes that are small in spatial extent are overlooked
by low resolution DEMs as a result of local averaging. Unfortu-
nately, many of these small steep slopes often present high prob-
abilities of slope failure, and if they are not considered by a DEM,
the regional landslide hazard level will be underestimated. This
can create serious issues for landslide preparedness planning. In
other words, important precautions, such as emergency response
procedures and construction regulations, may be neglected if the
landslide hazard level is underestimated.

To reduce the inaccuracies resulting from the effects of local aver-
aging on a DEM, the landslide hazard level should be estimated over
a variety of scales, starting with themost conservative at the critical

scale. The critical scale refers to theminimum scale at which a land-
slide would be deemed hazardous. This paper presents a methodol-
ogy to estimate the regional probability of slope failure at the critical
scale using local averaging theory with data provided by two DEMs.

The proposedmethodologywas illustrated using a test region of
size 31 km × 48 km located in the Alps. Because of the test region's
relatively large size, it is not surprising that the regional probability
of slope failures at the assumed critical size of 10 m were relatively
high (81%). At a slope scale of Tcrit = 10 m it makes sense that at least
one 10 by 10 m slope will fail in a region of size 31 km × 48 km with
high probability.

If a community or organization wishes to incorporate landslide
hazard analyses into their landslide preparation strategies, it might
be prudent to divide large regions, such as the one considered ear-
lier, into multiple subregions. For instance, the case study here sug-
gests an 81% chance that at least one slope in the region examined in
the Alps will fail, but whether or not the slope failure(s) will affect
any of the communities in the region (e.g., Chamonix) is not pro-
vided by the model. It may make more sense to restrict attention to
smaller regions surrounding communities. In addition, by breaking
the analysis down into several smaller units, it becomes possible to
pinpoint the most hazardous regions. In general, however, the size
of the region selected should depend on the use towhich the hazard
assessment is put. Decisions regarding community-level planning
will require smaller regions than those used at a national level.

The proposed hazard assessment model can be implemented for
any study region, provided that the elevation profile within that
region is approximately normally distributed and has beenmapped
by two DEMs at different resolutions. If the elevation profile is not
approximately normally distributed, the methodology would need
to employ a different final maximum slope distribution (i.e., some-
thing other than Rayleigh). If only one DEM resolution is available,
the elevationpoint scale correlation lengthmayhave tobeestimated
using the single elevation dataset and some judgement about how
the correlation length between the DEM local averages relates to the
point scale correlation length.

The authors note that the probability of slope failure depends not
only on slope angle but is also dependent on the slope height, which
is a parameter not explicitly considered in this regional landslide
hazard model. Clearly, the overall length and thus height of a slope
affects its failure probability, and only the slope angle has been ex-
plicitly considered to be random in this study. Nevertheless, slope
angle is generally the more important parameter and so if a reason-
able “median” slope height is assumed in the preceding risk assess-
ment framework, aswas done in this study, the regional risks should
be representative, at least relative to other regions.

Whether the critical scale slope failures will actually result in
human hazard is another issue needing further study. However,
the proposed methodology also provides a means to estimate
slope failure probabilities at larger, more serious, scales. For ex-
ample, the probability of regional slope failures at a slope scale of
T2 = 73mwas found to be about 64%, while at a slope scale of about
T1 = 773 m, the probability of regional slope failure decreases to
20%. These scale-dependent probabilities can be used in a more
formal regional risk assessment if slope failure consequences are
established.
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List of symbols

At total area of the region under analysis
�d slope increment in degrees
di ith slope angle in degrees = i�d
F1 event that a single randomly selected slope fails

Fs(s) cumulative Rayleigh distribution function. S may be sub-
scripted by 1 when referring to the first DEM (GTOPO) or by
2 when referring to the second DEM (SRTM)

L1, L2 latitudinal coordinates of the edges of a DEM cell
ni number of slopes having slope angle si in the region
ns number of soil types considered in the analysis
nt number of slopes in the region
Nni

random number of slopes that fail out of those slopes hav-
ing slope angle within the range si

p1 proportion of the region having the first soil type (fine-
grained)

p2 proportion of the region having the second soil type (gravely)
pf probability of one or more slopes failing in the region
pf1 probability of one or more slopes failing in the region at

the first DEM scale (GTOPO)
pf2 probability of one or more slopes failing in the region at

the second DEM scale (SRTM)
pk proportion of the region having the kth soil type
qi probability of nonfailure of a slope having slope angle

within the range si
r1i failure probability of the first soil type at the ith slope angle
r2i failure probability of the second soil type at the ith slope

angle
rE radius of the Earth
rki failure probability of the kth soil type at the ith slope angle
S random slope angle
ST random slope angle perceived at averaging scale T. T may be

subscripted by x or y to refer to the directional slopes, by 1 for
the first (GTOPO) or 2 for the second (SRTM) DEM, by “m” to
refer to themaximum slope, or by “m1” or “m2” for themax-
imum slopes in the first and second DEM, respectively.

s slope angle (m/m)
si ith slope angle range (m/m)
si− lower bound on the slope angle range si (m/m)
si+ upper bound on the slope angle range si (m/m)

smax maximum slope angle considered (m/m)
smin minimum slope angle considered (m/m)

T equivalent square dimension of an averaging cell. Tmay be
subscripted by 1 to refer to the equivalent square cell di-
mension of the first DEM (GTOPO), by 2 for the second DEM
(SRTM), or by crit for the critical scale

Tx actual x-dimension of an averaging cell
Ty actual y-dimension of an averaging cell

x, y coordinates of a point in the region under consideration
xT, yT coordinates of the center of a local average cell in the re-

gion
Z(x, y) true point surface elevation at the surface location (x, y)

ZT(xT, yT) locally averaged surface elevation over a cell centered at
(xT, yT)

�lat difference between two latitudinal points on the Earth's sur-
face

�long difference between two longitudinal points on the Earth's
surface


 standard normal cumulative distribution function
�Z variance function giving variance reduction due to averag-

ing the elevation over some domain
�ZT

mean of the local averaged surface elevations. T is sub-
scripted by either 1 or 2 for the first (GTOPO) or second
(SRTM) DEMs, respectively

�Z correlation coefficient between surface elevations at two
points in the region

�ZT
correlation coefficient between two local averages of sur-
face elevations

�ST
standard deviation of the slopes as seen after locally av-
eraging over cells of dimension T × T. T may be sub-
scripted by x for the x-direction slopes, by 1 for the first
DEM scale (GTOPO), by 2 for the second DEM scale
(SRTM), by crit for the critical scale, by 1x, 1y, 2x, 2y for
the directional slopes in the first and second DEMs, or by
m1 and m2 for the maximum slopes in the first and
second DEMs, respectively

�Z point scale standard deviation of the elevation Z
�ZT

standard deviation of the locally averaged elevations ZT. T
may be subscripted by 1 for the first DEM scale (GTOPO), by
2 for the second DEM scale (SRTM)

� absolute distance between two points, or between the cen-
ters of two local averages

�x absolute distance between two points in the x-direction
�y absolute distance between two points in the y-direction

Z isotropic point scale correlation length of the elevation field

Zx

x-direction correlation length of the elevation field

Zy

y-direction correlation length of the elevation field
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