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Introduction

Waste containment facilities rely on liner systems placed between
the waste facility and the underlying aquifer to minimize contami-
nant migration and thereby to limit the contamination of the sur-
rounding soil and groundwater. These liner systems may be either
naturally occurring or constructed and may be comprised of various
materials of various areal extents and thicknesses. Traditionally, the
equation governing the total advective flow rate, Q, through a satu-
rated soil liner is given by Darcy’s law as follows:

Q ¼ keff iA ð1Þ
where keff 5 effective hydraulic conductivity of the liner, i 5 hy-
draulic gradient across the liner, and A5 plan area of the liner. The
effective hydraulic conductivity, keff , is defined to be the uniform
(i.e., spatially constant) hydraulic conductivity value, which gives
the same total flow rate, Q, as that through the actual hydraulic
conductivity field, k, which varies randomly with spatial position x
(see, e.g., Bogardi et al. 1990). Although the flow is fully three-
dimensional (3D) in this study, the hydraulic conductivity is as-
sumed to be isotropic, such that the directional conductivities at
a point are all equal to k (or to keff ).

Hydraulic conductivity is a spatially variable property, both in
natural soils (Byers and Stephens 1983; Freeze and Cherry 1979) and
in compacted soil liners (Rogowski et al. 1985; Benson 1993), which
means that there is always some risk that the flow through a soil liner
will exceed the societally acceptable maximum regulatory limit.
Because k is spatially variable and random, the value of keff used in
Eq. (1) is also random and is some sort of average of k. The goals of
this paper are to estimate the distribution of keff and use this to estimate
the probability that the total flow through the liner will exceed the
regulatory limit, henceforth referred to as the exceedance probability.

Several researchers have published information relating to esti-
mating keff . In one of the earliest works on this topic, Warren and
Price (1961) used Monte Carlo simulation to study flow across a 3D
cube and found keff to be the geometric average, kG, of k (for details
about the arithmetic, geometric, and harmonic averages, see Fenton
and Griffiths 2008). Bouwer (1969) and Smith and Freeze (1979) all
found that keff was described well by kG for two-dimensional (2D)
flow. One of the earliest attempts to analytically define keff was
presented by Gutjahr et al. (1978), who used a spectral perturbation
method to determine keff for an unbounded domain under uniform
gradient. Gutjahr et al. (1978) proposed the following expressions
for the mean of keff for 2D flow [Eq. (2)] and 3D flow [Eq. (3)]:

mkeff ¼ expfmln kg ð2Þ

mkeff ¼ expfmln kg
�
1þ s2

ln k=6
� ð3Þ

wheremln k ands
2
ln k 5mean and variance of ln k, respectively,which

are obtained from the mean, mk , and variance, s2
k , of k through the

transformations
s2
ln k ¼ ln

�
1þ y2k

� ð4aÞ

mln k ¼ lnðmkÞ2 1
2
s2
ln k ð4bÞ

where yk 5sk=mk 5 coefficient of variation of k. If k is lognormally
distributed, as will be assumed here, then expfmln kg is its median.
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Using a self-consistent model, Dagan (1979) provided upper and
lower bounds on the estimates of mkeff in an unbounded 3D domain.
His best estimate ofmkeff is only slightly larger than that provided by
Gutjahr et al. (1978) inEq. (3).Atsln k 5 1:0 (i.e., yk 5 1:7),Dagan’s
bounds are approximately 0:1 expfmln kg#mkeff # 10 expfmln kg,
which is a verywide range (i.e., two orders of magnitude), suggesting
that there is very little confidence in analytical estimates of mkeff in
three dimensions.

Analysis of flow through an unbounded (i.e., infinite) domain
involves the implicit assumption that the correlation length is zero
because only the ratio of the correlation length to the domain size
matters when it comes to spatial variability. This simplifies the
theory because it results in a white noise random process where
every point in the field is independent of every other point. As far as
the authors are aware, soils always demonstrate some degree of
spatial dependence; thus, such white noise processes are unrealistic.
In other words, estimates of keff in bounded domains with nonzero
correlation lengths are more useful in practice.

For a bounded (i.e., finite) domain, the influence of the liner
aspect ratio (ratio of the liner’s thickness to its plan dimension) on
the distribution of keff was investigated by Liza (2010). Here, the
liner aspect ratio will be defined to be j5X=

ffiffiffiffiffiffi
YZ

p
, where the liner

has thickness X and planar dimensions Y3 Z. The generality that
this definition suggests has not been confirmed. Only the case where
Y 5 Z is considered here (i.e., a square liner), such that effectively
j5X=Y5X=Z in this study. The authors believe that j5X=

ffiffiffiffiffiffi
YZ

p
can be used even ifY �Z; however, the limits of such a belief require
further investigation.

As j approaches zero (i.e., the liner thickness approaches zero),
the total flow through the liner becomes the arithmetic sum of the
flows through each point in the plane of the liner. In this case, keff
becomes the arithmetic average, kA, of k over the liner area (anal-
ogous to a set of resistors in parallel) andmkeff 5mk. Alternatively, as
j approaches infinity (i.e., flow through a long pipe), keff approaches
the harmonic average, kH , of k. Flow through a pipe is controlled by
the lowest conductivity regions encountered in the pipe, analogous
to a set of resistors in series (see Fenton and Griffiths 1993).
In general, kH is the most strongly low conductivity dominated
average; i.e., kH , kG , kA.

For aspect ratios somewhere between zero and infinity, keff lies
somewhere between kA and kH . As the liner thickness increases
from zero (arithmetic average), spatial variation through the liner
thickness leads to low conductivity regions that attempt to block the
flow (harmonic average). However, because the flow can seek higher
conductivity paths around the low conductivity regions in two or three
dimensions (Benson and Daniel 1994a), keff is not as low as predicted
by kH . Fenton andGriffiths (1993) used the randomfinite-element (FE)
method (RFEM) to examine the influence of correlation length and
aspect ratio on the distribution of keff in a 2D bounded domain. For
a square domain, they found keff to be equal to kG, which is in
agreementwith the studies byGutjahr et al. (1978) andDagan (1979) in
the limitwhen the correlation length is set to zero (unboundeddomain).

In three dimensions, the best estimate of mkeff is given by Eq. (3)
for unbounded domains (with considerable uncertainty). For bounded
domains, Eq. (3) clearly cannot generally be true. To understand
why this is so, the random field model used here must first be de-
scribed. In this paper, k will be assumed to be lognormally dis-
tributed so that ln kðx Þ is normally distributed. The ln k field is fully
specified by three quantities; i.e., its mean (mln k), its standard de-
viation (sln k), and its correlation structure (the correlation co-
efficient between any two points in the field). A Markovian
correlation structurewill be assumed here (seeVanmarcke 1984) with
a separable correlation function (which is a product of the directional
correlation functions) as follows:

rln kðt1, t2, t3Þ ¼ expf22jt1j=u1gexpf22jt2j=u2gexpf22jt3j=u3g
ð5Þ

where ti 5 distance between two points in the field in each co-
ordinate direction, i5 1, 2, and 3.

The decay rate parameters ui, for i5 1, 2, and 3, are the directional
correlation lengths. In this study, the correlation lengths are assumed to
be equal; i.e., u1 5 u2 5 u3 5 uln k. Because the correlation function is
separable, its corresponding variance reduction function (Vanmarcke
1984) is also separable and can be explicitly written as follows:

gln kðX, Y ,ZÞ ¼ gðXÞgðYÞgðZÞ ð6Þ

where

gðXÞ ¼ u2ln k
2X2

�
2X
uln k

þ exp

�
2 2X
uln k

�
2 1

�
ð7Þ

and similarly for gðYÞ and gðZÞ. Here, gln kðX,Y , ZÞwill be referred
to simply as gðVÞ, where V represents the total liner volume (or
element volume, if V is replaced by Ve).

Returning to the issue of the accuracy of Eq. (3), if the soil do-
main is bounded and uln k 5‘, then every realization of the random
conductivity field shows no spatial variability; i.e., all points in the
field have the same (random) value, k. This statement means that
keff 5 k for each realization, and thus mkeff 5mk , which is signifi-
cantly higher than suggested by Eq. (3). In other words, Eq. (3)
cannot hold for bounded domains unless uln k 5 0.

The overall goal of this study is to provide semitheoretical
equations allowing the simple estimation of the probability that the
total flow through a liner exceeds the maximum flow prescribed by
regulatory agencies. This exceedance probability can be expressed
as P½keff . kcrit�, where kcrit is the maximum allowable regulatory
hydraulic conductivity.Bogardi et al. (1990),Benson andCharbeneau
(1991), and Benson and Daniel (1994a, b), have all conducted re-
search into the reliability of soil liners where the exceedance prob-
ability is considered. However, none of these studies investigated the
influence of spatial variability on exceedance probability. Menzies
(2008) examined the influence of the correlation length and the
distribution of k on the exceedance probability associated with flow
through thin compacted soil liners, and his work agrees with the
small aspect ratio (thin liner) case considered here.

To achieve the overall goal, the subsequent sections of this paper
develop a prediction for the probability of exceedance as a function of
the basic statistics of the random conductivity field (mk ,sk, and uln k)
and the liner aspect ratio, j. To calibrate the prediction at intermediate
aspect ratios (where the theory is not exact), simulations are performed
in which the soil is divided into a set of n cubic elements and the
hydraulic conductivity, ki, assigned to the ith element is taken to be the
geometric average of the random conductivity field over the ith el-
ement domain. This approach slightly underestimates the best esti-
mate ofmkeff when uln k 5 0 [as in Eq. (3)] but has the correct behavior
for larger uln k. The choice of a geometric average over cubical
domains is also in agreement with the work by Warren and Price
(1961) and is at the center of the bounds suggested by Dagan (1979).
Finally, the uses of the developed failure probability prediction
equations are illustrated through an example.

Simulations

Monte Carlo simulations were performed using a 3D RFEM pro-
gram,mrflow3d, designed to analyze stochastic fluid flow problems
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(Griffiths and Fenton 1997), which were intended to aid in the
calibration of the semitheoretical failure probability equations de-
veloped subsequently in the paper. The mesh discretization used in
the simulations is illustrated in Fig. 1. The cubes are shaded dif-
ferently in grayscale to emphasize that they are deemed to have
spatially variable hydraulic conductivities.

An impervious boundary was assumed on the vertical edges of the
mesh and a uniform pressure head of 1.0 (with the same units as the
liner dimensions) was applied to the upper surface of themesh, which
directs the flow downward (i.e., in the X direction on average). The
inputs to the model were mk, sk, and uln k; the number of elements in
each coordinate direction; and the size of the elements. The simulation
proceeded by simulating local averages,Gi, for i5 1, 2, . . . , nwhere
n is the total number of elements in the soil model. Each local average,
Gi, was the arithmetic average of a standard normal field,G, over the
ith element. The final lognormally distributed hydraulic conductivity
value assigned to the ith element was obtained through the trans-
formation ki 5 expfmln k 1sln kGig. Because Gi is an arithmetic
average ofG, then ki is a geometric average of k over the ith element
(Fenton and Griffiths 2008).

Flow through themodel was then estimated using the FEmethod.
As part of the analysis, keff , kA, and kG were calculated using the
following expressions for each random field realization:

keff ¼ mk

 
Q
Qmk

!
ð8aÞ

kA ¼ 1
n

Pn
i¼1

ki ð8bÞ

kG ¼
�
∏
n

i¼1
ki

�1=n
¼ exp

(
1
n

Pn
i¼1

ln ki

)
ð8cÞ

where Q 5 total flow estimated through the current realization of
the random conductivity field by the FE analysis; Qmk

5 total flow
through a soil having uniform hydraulic conductivity, mk , through-
out the soil; ki5 local geometric average of the hydraulic conductivity
over the ith element; and n 5 number of elements in the FE mesh.

Because k is assumed lognormally distributed, the mean and
variance of kG can be computed analytically to be

mkG ¼ exp
n
mln k þ 1

2
gðVÞs2

ln k

o
¼ mk	

1þ y2k

0:5½12gðVÞ� ð9aÞ

s2
kG ¼ m2

kG

	
exp
�
s2
ln kgðVÞ

�
2 1



¼ m2
k	

1þ y2k

12gðVÞ

h�
1þ y2k

�gðVÞ
2 1
i

ð9bÞ

where V 5XYZ 5 total volume of the soil liner. The analytical
computation of the mean and variance of kA is somewhat more
complicated because kA is an arithmetic average of a series of
geometric averages, ki. The mean of kA is given by

mkA ¼ exp
n
mln k þ 1

2
gðVeÞs2

ln k

o
¼ mk	

1þ y2k

0:5½12gðVeÞ� ð10aÞ

where Ve 5 volume of an element. Real soil liners will not have
elements; thus, recommendations are made subsequently in the paper
regarding what the value of Ve should be for a real soil. To compare
with the simulation results, the following FE volume is used:
Ve 5Dx3Dy3Dz where Dx, Dy, and Dz are the dimensions of each
element in the FEmodel. Regarding the variance of kA, it is well known
that arithmetic averaging of k leads to a reduction in the variance.
Unfortunately, the variance reduction functionprovidedbyEqs. (6) and
(7) gives the amount that the variance is reducedwhen ln k is averaged,
not when k is averaged. Past experience by the authors indicate that the
variance reduction in real space (averaging k) is generally quite similar
to the variance reduction in log space (averaging ln k) for Markov
correlation structures, allowing the following approximation:

s2
kA x gðVÞs2

ki ¼
gðVÞm2

k	
1þ y2k


12gðVeÞ
h�
1þ y2k

�gðVeÞ 2 1
i

ð10bÞ

where s2
ki
5 variance of the geometric average of k over the ith

element, having volume Ve [see Eq. (9b), replacing V with Ve].
The distribution of keff can be estimated by simulation. Fig. 2

demonstrates that the frequency-density plot of keff is well fit by
a lognormal distribution, having a p value of 0.84, which indicates
strong support for the fit. On the basis of Fig. 2, and similar results
found for other values of mk , yk , uln k , and j (not shown), the dis-
tribution of keff will be assumed to be lognormal. In this case,
the exceedance probability, P½keff . kcrit�, is given by

P
	
keff . kcrit


 ¼ 12F

 
ln kcrit 2mln keff

sln keff

!
ð11Þ

Fig. 1. Illustration of mesh discretization used in the RFEM
Fig. 2. Frequency-density plot of keff , based on 1,000 realizations, with
fitted lognormal distribution
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where F 5 standard normal cumulative distribution function,
and mln keff and sln keff 5 mean and SD of ln keff , respectively.

Parameters Used in the Simulations

The soil model used in the simulations (see Fig. 1) had planar
dimensions Y 3 Z5 1:03 1:0. To calibrate the effect of liner
thickness on exceedance probability at intermediate aspect ratios
(where calibration is required), jwas varied from 0.1 to 1.0. Smaller
values of the aspect ratio represent liners used in landfills having
large areal extent relative to their thickness, while larger aspect ratios
(e.g., j5 1:0) correspond to liners used in small leachate lagoons or
using very thick natural clay deposits. In each simulation, mk can be
normalized with respect to the regulatory value, kcrit, by using
mk=kcrit in place of mk. Here, except for the final example where real
values are used, this normalization has been carried out in which
mk 5 1:0 indicates that the actual mean conductivity is equal to kcrit.

The parametric variations considered in the simulations for
a total of npar 5 43 33 73 45 336 simulation runs (each of
which consisted of nsim 5 1,000 realizations of the k field) were
as follows:
• Normalized mean hydraulic conductivities: mk 5 0:5, 1:0, 1:5,

and 2:0;
• Coefficients of variation: yk 5 0:5, 1:0, and 2:0;
• Correlation lengths: uln k 5 0:01, 0:05, 0:1, 0:5, 1:0, 5:0, and 10:0;

and
• Aspect ratio of liner: j5 0:1, 0:3, 0:6, and 1:0.
Values of j, 0:1 were not considered in the simulation because the
probabilistic behavior of thin liners is already known by theory.

A sensitivity analysis was performed to examine the influence of
the element mesh refinement on the relative accuracy of the output
quantities of interest (keff , kA, and kG), for the case where j5 1:0.
To this end, a soil domain of size 13 13 1 was discretized into
203 203 20 up to 323 323 32 elements. All mesh resolutions
gave similar results; thus, the 203 203 20 element mesh was se-
lected for the subsequent simulation runs because it runs about 50
times faster than the 323 323 32 mesh (e.g., 1 week rather than
1 year at 2011 computer speeds). The 203 203 20 mesh dis-
cretization means that each element has dimensions Dx3Dy3
Dz5 0:053 0:053 0:05. The correlation lengths considered in the
study thus ranged from significantly less than the element size
(uln k 5 0:01� 0:05) to significantly larger than the soil regime
(uln k 5 10:0� 1:0).

The other aspect ratios considered (e.g., j5 0:1) were imple-
mented simply by reducing the number of elements in the X di-
rection. Thus, the mesh corresponding to j5 0:1 was of size
23 203 20, and so on. Although the choice of a lower bound on the
aspect ratio of 0.1 may seem questionable, smaller values are not
needed because theory dictates that as j→ 0, then keff → kA. In other
words, the only uncertainty in analytically predicted probabilities is
at intermediate aspect ratios; therefore, only j ranging from0.1 to 1.0
were considered in the simulations. It will be seen in the subsequent
section that even when j5 0:1, the value of keff is very close to its
limiting value of kA, as expected by theory. The choice of a basic plan
area of Y 3 Z5 13 1 allows the results to be easily scaled to any
liner plan area as long as both the aspect ratio and the ratio of the
correlation length to a representative plan dimension (e.g.,

ffiffiffiffiffiffi
YZ

p
) are

maintained. The correlation length must have the same units as the
dimensions of the clay layer.

All simulations involved generating 1,000 (5 nsim) realizations
for each parameter set considered. This means that the standard
deviations of each of the averages computed in Eq. (8) are ap-
proximately sk=

ffiffiffiffiffiffiffiffi
nsim

p
5 0:03sk (based on the SD of kA). This also

means that the SD of any probability estimate is approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð12bpÞ=nsimp
, where bp is the estimated probability. In general,

for small probabilities, the SD of the probability estimate is approx-
imately 0:03

ffiffiffibpp , which means that this simulation cannot resolve
accurate probability estimates of less than about 0.001.

Results

Mean Effective Hydraulic Conductivity

The influence of correlation length on the averages (sample means)
of kA, kG, and keff are shown in Figs. 3 and 4 for liner aspect ratios of
0.1 and 1.0, respectively. Both Figs. 3 and 4 are based on simulation
averages and indicate that, as expected by theory, when the cor-
relation length is small all averages start at the median (expfmln kg)
and when the correlation length is large all averages approach the
mean (mk).

For all aspect ratios considered in this study, the average of keff
was found to lie between the geometric and arithmetic averages. A
comparison of Fig. 3 (j5 0:1) versus Fig. 4 (j5 1:0) reveals that
the average of keff approaches the arithmetic average when the
aspect ratio is small, as expected. Plots of average keff versus the
aspect ratio (not shown) are basically straight lines over the range
of aspect ratios considered in the simulations, indicating that the
following linear regression is appropriate as a prediction for the
mean of keff :

mkeff ¼ amjmkG þ �12amj
�
mkA ð12Þ

where mkG 5 mean of kG and mkA 5 mean of kA. When j→ 0 (thin
liner), mkeff →mkA , as desired.

The regressioncoefficient,am, is obtained byminimizing the sum
of squared errors between prediction and simulation as follows:

am ¼
Pnpar

j¼1jj

mkAj 2mkGj

�
mkAj 2 bmkeffj

�
Pnpar

j¼1

h
jj

mkAj 2mkGj

�i2 ¼ 0:7669 ð13Þ

where npar 5 336 5 total number of parameter sets considered (see
the previous section); jj 5 aspect ratio of the jth parameter set; mkAj

Fig. 3. Influence of correlation length on the sample means of kA, kG,
and keff for liner aspect ratio j5 0:1
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and mkGj 5 arithmetic and geometric means predicted for the jth
parameter set [see Eqs. (9a) and (10a)], respectively; and bmkeffj 5
samplemean keff estimated from the jth parameter set simulation run,
based on 1,000 realizations. Fig. 5 shows the comparison between
the simulated and predicted [Eq. (12)] mean effective hydraulic
conductivity over all parameter sets. The predicted and simulated
results agree very well.

SD of Effective Hydraulic Conductivity

Figs. 6 and 7 show the influence of uln k on the SD of kA, kG, and
keff for aspect ratios of 0.1 and 1.0, respectively, as estimated
from 1,000 realizations. Figs. 6 and 7 illustrate that as uln k increases,
the SD of all three averages increase toward their limiting value of
sk 5 1:0, as expected by theory (Fenton and Griffiths 1993). Also,
the SD of keff is very close to skA when j5 0:1, and approaches skG
for larger aspect ratios.

As with the predicted mean, a linear regression of the form

skeff ¼ asjskG þ ð12asjÞskA ð14Þ

was found to be appropriate to predict the SD of keff . The form of
Eq. (14) ensures that skeff 5skA when j5 0, as desired. The values
of skG and skA are calculated using Eqs. (9b) and (10b) and the
regression coefficient, as, is obtained from

as ¼
Pnpar

j¼1jj
�
skAj 2skGj

��
skAj 2 bskeffj

�
Pnpar

j¼1

	
jj
�
skAj 2skGj

�
2 ¼ 0:9579 ð15Þ

where skAj and skGj 5 SD of the arithmetic and geometric averages
predicted for the jth parameter set [see Eqs. (9b) and (10b)], re-
spectively; and bskeffj 5 sample SD of keff estimated from the jth
parameter set simulation (1,000 realizations).

Fig. 8 shows the comparison between the simulated and predicted
[Eq. (14)] SD of keff over all parameter sets. The predicted and
simulated results agree very well; however, they show somewhat
more scatter than seen in the comparison of the predicted and
simulated means (Fig. 5). This result is to be expected because the
uncertainty of SD estimates is higher than the uncertainty of mean
estimates.

Exceedance Probability

The exceedance probability is the probability that the effective hy-
draulic conductivity exceeds the regulatory hydraulic conductivity,
P½keff . kcrit�. The mean and SD of keff are predicted by Eqs. (12) and
(14).Asdemonstrated byFig. 2, keff is lognormally distributedwith the
parameters given by Eq. (4a). Armedwith these results, the probability
of exceedance can be predicted using Eq. (11). Fig. 9 shows how the
predicted and estimated (from simulation) exceedance probabilities
compare for both the thinnest and thickest liners considered here,
j5 0:1 and 1:0, and the agreement is seen to be excellent.

Fig. 10 shows that out of the 336 parameter sets considered in this
study, six cases showed relatively poor agreement between predicted
and simulated exceedance probabilities. These poor fits have been
identified using plus signs in Fig. 10 and all six cases correspond to
mk 5 2:0, yk 5 2:0, and uln k # 0:5. There are a total of 16 parameter
set cases where mk 5 2:0, yk 5 2:0, and uln k # 0:5; therefore, only

Fig. 4. Influence of correlation length on the sample means of kA, kG,
and keff for liner aspect ratio j5 1:0 Fig. 5.Comparison of predicted mean effective hydraulic conductivity

with simulated sample means

Fig. 6. Influence of correlation length on the sample SD of kA, kG, and
keff for liner aspect ratio j5 0:1
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about one-third of these cases actually resulted in poor agreement
between simulation and prediction.

Fig. 10 suggests that the prediction of the exceedance probability
provided by the semiempirical theory proposed previously is not
always accurate for large yk and mk and small uln k. For example,
errors in estimates of the variance reduction, g, become magnified
when yk is large because all of the predictions for the means and SD
of the various conductivity averages involve terms of the form
½11y2k �12g. If the cases where mk $ 2:0 and yk $ 2:0 are omitted
from consideration the agreement between predicted and simulated
exceedance probabilities improves because all of the plus signs in
Fig. 10 disappear. In addition, because cases where mk $ 2:0 gen-
erally correspond to exceedance probabilities well in excess of 50%,
accurately predicting their exceedance probabilities is not so im-
portant. For practical cases, the prediction of the exceedance
probability given by Eq. (11) is seen to be quite accurate and the
prediction will be used subsequently to investigate the behavior of

the exceedance probability with respect to the basic parameters of
the random hydraulic conductivity field; i.e., uln k, mk , yk , and j.

Fig. 11 shows that the exceedance probability basically decreases
toward zerowith decreasing correlation length for any liner thickness.
The fact that the exceedance probability approaches zero at small
correlation lengths is expected. That is, when the correlation length
is small (e.g., uln k # 0:1), the mean of all three averages shown in
Figs. 3 and 4 are approaching the median, which is expfmln kg5 0:71
when mk 5 1:0 and yk 5 1:0. Because this is considerably below the
standardized regulatory value used in this study, kcrit 5 1:0, and
because the SD of all three averages become small when the corre-
lation length is small (see Figs. 6 and 7), the probability of exceedance
becomes understandably very smallwhen uln k → 0, as seen in Fig. 11.

On the other hand, as uln k →‘, the mean of all three averages
approaches mk (see Figs. 3 and 4) and the SD of all three averages
approachessk (see Figs. 6 and 7). In other words, when uln k 5‘ and
mk 5 1 and sk 5 1, as considered in Fig. 11, mkeff 5mk 5 1 and

Fig. 7. Influence of correlation length on the sample SD of kA, kG, and
keff for liner aspect ratio j5 1:0

Fig. 8. Comparison of predicted SD of keff with simulated sample SD

Fig. 9. Comparison of predicted and simulation-based exceedance
probabilities for j5 0:1 and 1:0

Fig. 10. Comparison of predicted and simulation-based exceedance
probabilities over all parameter sets (relatively poor agreements are
shown with 1 signs rather than dots)
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skeff 5sk 5 1 are obtained such that ykeff 5 1=15 1. The parameters
of the lognormally distributed keff in this case are then sln keff 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð11 12Þp
5 0:8326 andmln keff 5 lnð1Þ2 ð0:8326Þ2 520:3466;

thus, according to Eq. (11)

P
	
keff . kcrit


 ¼ 12F

0:3466
0:8326

�
¼ 0:339

which is what all curves in Fig. 11 are tending toward as uln k →‘.
Of additional interest in Fig. 11 is the fact that a worst-case cor-

relation length exists, where the exceedance probability reaches
a maximum, for the more commonly encountered thinner liners
(j, 0:5) but not for the thicker liners. When j, 0:5, the worst-case
correlation length is seen to be about 50% of the plan liner dimension
(e.g.,

ffiffiffiffiffiffi
YZ

p
). The existence of a worst-case correlation length (e.g.,

uln k x 0:5
ffiffiffiffiffiffi
YZ

p
) is important because it can be conservatively used in

the event that the true correlation length is unknown—and the true
correlation length is almost always unknown at a site. However, the
worst case does not always occur at an intermediate correlation length,
as is also seenwhen Fig. 12 is considered. In general three worst cases
should be considered (uln k → 0, uln k x 0:5

ffiffiffiffiffiffi
YZ

p
, and uln k →‘), to

find the most conservative estimate of the exceedance probability.
Fig. 12 illustrates how the exceedance probability changes as

a function ofmk and uln k. Recall thatmk is normalized in this paper by
kcrit so that kcrit is taken as 1.0. In general, if the mean effective
hydraulic conductivity, mkeff , exceeds kcrit 5 1, then the exceedance
probability, P½keff . kcrit�, will be larger than 50%.

Consider first the limiting behavior of Fig. 12. As uln k → 0, keff
becomes equal to the median,mkeff 5 expfmln kg. When yk 5 1:0 and
mk 5 1:5, then mln k 5 0:059 so that mkeff 5 1:06. kcrit. At the same
time, the SD of the effective hydraulic conductivity, skeff , is going
to zero as uln k → 0 (see Figs. 6 and 7), which means that
P½keff . kcrit�→ 1:0. In other words, when the median of k,
expfmln kg, exceeds 1.0, the exceedance probability is near 1.0 at
small correlation lengths. In this case, the worst case (highest
exceedance probability) occurs when uln k → 0, which is as seen in
Fig. 12. As the correlation length increases from zero, the exceed-
ance probability decreases from 1.0, which is because skeff increases
rapidly with increasing uln k (see Figs. 6 and 7).

When the median of k is less than 1.0 (i.e., mk less than about 1.4
when yk 5 1:0), the exceedance probability starts near 0 at small
correlation lengths. As the correlation length increases, both the mean
and SD of keff increase, leading to an increase in the exceedance
probability, as seen in Fig. 12. When mk 5 0:5, the maximum of mkeff
(attainedwhen uln k is large) is still only half the regulatory kcrit. That is,
when mk 5 0:5 and yk 5 1:0, the maximum exceedance probability,
which is about 10%,occurswhenuln k is large. Inotherwords,when the
mean hydraulic conductivity is small, relative to the regulatory value,
and when j. 0:3 (see Fig. 11), the worst-case exceedance probability
occurs when uln k →‘; i.e., when mkeff 5mk and skeff 5sk.

Fig. 13 illustrates how the exceedance probability is influenced by
the coefficient of variation, yk. Fig. 13 presents somewhat counter-
intuitive results, in that as yk increases the exceedance probability
decreases. The reason for this is because at least at some level of
geometric averaging, both mkA and mkG decrease with increasing yk
[see Eqs. (9a) and (10a)]. This means that mkeff decreases with in-
creasing yk , resulting in the exceedance probability decreasing (see
Benson and Daniel 1994b).

Estimating Probability of Exceedance: Example

The methodology presented in this paper to estimate the probability
of exceedance is perhaps best illustrated through an example.
Consider a proposed liner that has a plan area of 103 10m and
thickness, X, of 1 m such that j5 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
103 10

p
5 0:1. While this is

considered to be a very small liner, the procedure presented sub-
sequently is identical to that required for any liner geometry. This
geometry was selected because it can be compared with the sim-
ulation results carried out previously.

Suppose that testing of the clay intended to be used to construct
the liner suggests that mk 5 13 1029m=s, which is equal to the
regulatory conductivity, kcrit 5 13 1029m=s, and has yk 5 1:0. The
final constructed liner will be assumed to have a correlation length of
uln k 5 3m in all three directions (which is approximately the worst
case). The desire is to quantify the probability that the actual keff will
exceed the regulatory value.

One fundamental issue that first needs to be resolved is how to
choose the size of the elemental geometric averaging domain. In the

Fig. 11. Influence of correlation length and liner aspect ratio on pre-
dicted exceedance probability

Fig. 12. Influence of correlation length and normalizedmean hydraulic
conductivity on predicted exceedance probability
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previous simulations, this size was quite naturally the size of the FEs
used. However, a real liner will have no preordained element size.
Nevertheless, as soon as the liner thickness increases from zero,
some geometric averaging will take place, as previously discussed.
It is recommended here that the size of the cube over which geo-
metric averaging takes place should be the lesser of (1) 5% of the
representative plan dimension,

ffiffiffiffiffiffi
YZ

p
, or (2) the liner thickness, X. In

this example, 0:05
ffiffiffiffiffiffi
YZ

p
5 0:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
103 10

p
5 0:5m, while the liner

thickness is X5 1m. Thus, a geometric averaging element di-
mension of Dx5Dy5Dz5 0:5m was selected.

The two variance function values that are required by the method
[see Eqs. (9) and (10a)] are gðVÞ5gðXÞgðYÞgðZÞ and gðVeÞ5
gðDxÞgðDyÞgðDzÞ, where according to Eq. (7)

gð0:5Þ ¼ 32

2ð0:5Þ2
�
2ð0:5Þ

3
þ exp

�
2
2ð0:5Þ

3

�
2 1

�
¼ 0:8976

Similarly, gð1:0Þ5 0:8104 and gð10:0Þ5 0:2551, which according
to Eq. (6) gives

gðVeÞ ¼ g3ð0:5Þ ¼ 0:89763 ¼ 0:7231

gðVÞ ¼ gð1:0Þgð10:0Þgð10:0Þ ¼ 0:8104ð0:2551Þ2 ¼ 0:05272

Eqs. (9a) and (9b) can now be used to find the mean and standard
deviation of the geometric average kG

mkG ¼ 1 � 1029

½1þ 12�0:5ð120:05272Þ ¼ 0:7201 � 1029 m=s

skG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 � 1029

�2
½1þ 12�120:05272

h�
1þ 12

�0:05272
2 1
ivuut

¼ 0:1389 � 1029 m=s

Similarly, Eq. (10a) can be used to find the mean and standard
deviation of the arithmetic average kA

mkA ¼ 1 � 1029

½1þ 12�0:5ð120:7231Þ ¼ 0:9085 � 1029 m=s

skA x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05272

�
1 � 1029

�2
½1þ 12�120:7231

h�
1þ 12

�0:7231
2 1
ivuut

¼ 0:1683 � 1029 m=s

Using am 5 0:7669, as found in previously from the simulation
results, the mean keff can be estimated from Eq. (12) as follows:

mkeff ¼ 0:7669ð0:1Þ�0:7201 � 1029�
þ ½12 0:7669ð0:1Þ��0:9085 � 1029�

¼ 0:8940 � 1029 m=s

which is close tomkA , as expected, because the aspect ratio of the liner
is relatively small (j5 0:1). Using as 5 0:9579 in Eq. (14) allows
the estimation of the SD of keff

skeff ¼ 0:9579ð0:1Þ�0:1389 � 1029�
þ ½12 0:9579ð0:1Þ��0:1683 � 1029�

¼ 0:1655 � 1029 m=s

such that ykeff 5skeff=mkeff 5 0:1655=0:89405 0:1851. Transform-
ing into log space [Eq. (4a)] gives the distribution parameters of keff

sln keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ 0:18512Þ

q
¼ 0:1835

mln keff ¼ ln
�
0:8940 � 1029�2 1

2
ð0:1835Þ2 ¼ 220:85

and the final probability of exceedance estimate is obtained using
Eq. (11)

P
	
keff . kcrit


 ¼ 12F

�
ln
�
1 � 1029

�þ 20:85

0:1835

�
¼ 12Fð0:691Þ ¼ 0:241

In terms of the simulation, this example is equivalent to the case
wheremk 5 1:0, yk 5 1:0, X3 Y 3Z5 0:13 1:03 1:0, and uln k 5
0:3. Using these parameters, the simulation-based probability of
exceedance is 0.242, which is in excellent agreement with that
predicted using the theoretical approach presented previously.

Summary and Conclusions

Considering 3D spatial variability, the distribution of the liner ef-
fective hydraulic conductivity, keff , is predicted using theoretical
results known at both small and large aspect ratios and correlations
lengths, combined with calibration by RFEM Monte Carlo simu-
lations at the intermediate aspect ratios and correlation lengths. The
predicted distribution of keff is then used to estimate the probability
that the soil liner will fail to maintain an acceptable overall level
of safety with respect to hydraulic flow; i.e., to estimate the prob-
ability that keff exceeds some prescribed regulatory conductivity,
P½keff . kcrit�. The paper considers only risk associated with Darcy

Fig. 13. Influence of correlation length and hydraulic conductivity
coefficient of variation on predicted exceedance probability
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flow through a liner, and not, for example, with chemical transport.
However, the proposedmethodology can also be used to assess liner
risks as a result of other liner limit states.

In estimating the mean and variance of the effective hydraulic
conductivity of a liner, it was assumed that there is some elemental
level over which geometric averaging of hydraulic conductivity
always occurs; therefore, the arithmetic average is really an arith-
metic average of geometric averages. The authors recommend that
the geometric averaging element be cubic with the side dimension
equal to the smaller of 0:05

ffiffiffiffiffiffi
YZ

p
or the liner thickness, X. Another

assumption made in the model is that the variance reduction because
of arithmetic averaging of k over the liner volume is approximately
equal to the variance reduction because of arithmetic averaging of
ln k over the same volume. These assumptions are believed to be
reasonable, although a few discrepancies between the predicted and
simulated exceedance probabilities may suggest that they are in-
accurate when mk $ 2kcrit and yk $ 2. The authors note that a liner
havingmk $ 2kcrit would probably be unacceptable in any case; thus,
these conditions are of limited practical interest.

The following observations regarding the behavior of the dis-
tribution of keff can be made on the basis of this study:
1. Themean of keff increases from themedian of kðexpfmln kgÞ to

the mean of k (mk) as the correlation length increases.
2. The SD of keff increases from zero to sk as the correlation

length increases.
3. The distribution of keff is at least approximately lognormal

(see Fig. 2).
4. The distribution of keff lies between the distributions of kA and

kG (where it is noted that kA is actually an arithmetic average
of geometric averages) and its parameters are accurately
estimated by simple linear regression.

The following observations regarding the behavior of the
exceedance probability can be made on the basis of this study:
1. The exceedance probability increases with increasing corre-

lation length if the median of k is less than the regulatory
conductivity, kcrit (the case where the median exceeds kcrit is of
little interest because this case will almost certainly be con-
sidered unacceptable).

2. The exceedance probability increases as the liner becomes
thinner (decreasing j).

3. The exceedance probability increases with increasing hydrau-
lic conductivity mean, mk.

4. The exceedance probability decreases with increasing yk for
fixed mk. This possibly counterintuitive observation arises
mostly because of the blocking influence of downstream var-
iation when that variation increases inmagnitude (i.e., when the
low conductivity regions become even lower).

5. A worst-case correlation length is seen to exist (having the
highest exceedance probability), which can be conservatively
used in the event that the actual correlation length is unknown.
In the cases where the median of k is less than kcrit, the worst
case occurs when uln k x 0:5

ffiffiffiffiffiffi
YZ

p
for aspect ratios j# 0:3

and at uln k →‘ for higher aspect ratios.
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Notation

The following symbols are used in this paper:
A 5 liner plan area 5 Y 3 Z;

G 5 standard normal random field;
Gi 5 local average of G over the ith element

(having volume Ve);
k 5 spatially variable random hydraulic

conductivity field;
kA 5 arithmetic average of element geometric

averages over the liner volume;
kcrit 5 prescribed regulatory maximum allowable

hydraulic conductivity;
keff 5 effective hydraulic conductivity that would

lead to the same total flow through a uniform
liner as in the actual liner;

kG 5 geometric average of hydraulic conductivities
over the liner volume;

kH 5 harmonic average of hydraulic conductivities
over the liner volume;

ki 5 geometric average of hydraulic conductivities
over the ith element (having volume Ve);

n 5 number of elements in the FE model;
npar 5 number of parameter sets considered in the

simulation;
nsim 5 number of simulations used to estimate

statistics of each parameter set;
Q 5 total flow through the spatially random soil

liner;
Qmk

5 total flow through a soil liner having
spatially uniform hydraulic conductivity
equal to mk;

V 5 total volume of the soil liner 5 X3 Y 3 Z;
Ve 5 element volume over which geometric

averaging takes place 5 Dz3Dy3Dz;
X 5 liner thickness;
x 5 spatial coordinate in three dimensions;
Y 5 liner plan dimension;
Z 5 liner plan dimension perpendicular to Y and

assumed equal to Y ;
am 5 regression coefficient used in the prediction

of mkeff ;
as 5 regression coefficient used in the prediction

of skeff ;
g, gln k 5 variance reduction functions when averaging

ln k over some volume;
Dx 5 X-direction dimension of geometrically

averaged element;
Dy 5 Y-direction dimension of geometrically

averaged element;
Dz 5 Z-direction dimension of geometrically

averaged element;
ui 5 directional correlation length of the ln k

random field in the ith direction, i5 1, 2, 3;
uln k 5 correlation length of the ln k random field;
mk 5 mean of the hydraulic conductivity field k;
mkA 5 mean of the arithmetic averages of element

geometric averages ki over the liner
volume;

mkAj 5 mean of the arithmetic averages of element
geometric averages ki over the liner volume for
the jth parameter set;

mkeff 5 mean of effective hydraulic conductivity keff ;
mkG 5 mean of the geometric average of the

hydraulic conductivity over the liner volume;
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mkGj 5 mean of the geometric average of the
hydraulic conductivity over the liner volume
for the jth parameter set;bmkeffj 5 sample mean of the effective hydraulic
conductivity from the simulation runs for the
jth parameter set;

mln k 5 mean of log-hydraulic conductivity field ln k;
mln keff 5 mean of the log-effective hydraulic

conductivity;
j 5 ratioof liner thicknessX toplandimension

ffiffiffiffiffiffi
YZ

p
;

jj 5 ratio of the liner thickness to plan dimension
for the jth parameter set;

rln k 5 correlation coefficient between twopoints in the
ln k random field;

sk 5 SD of hydraulic conductivity field k;
skA 5 SD of the arithmetic averages of element

geometric averages ki over the liner volume;
skAj 5 SD of the arithmetic averages of element

geometric averages ki over the liner volume
for parameter set j

skeff 5 SD of effective hydraulic conductivity keff
skG 5 SD of the geometric average of the hydraulic

conductivity over the liner volume;
skGj 5 SD of the geometric average of the hydraulic

conductivity over the liner volume for the
jth parameter set;bskeffj 5 sample SD of the effective hydraulic
conductivity from the simulation runs
for the jth parameter set;

ski 5 SD of the geometric average of the hydraulic
conductivity field over the ith element;

sln k 5 SD of log-hydraulic conductivity field ln k;
sln keff 5 SD of the log-effective hydraulic

conductivity;
t 5 distance between two points in the liner;
ti 5 distance between two points in the liner in the

ith direction, i5 1, 2, 3;
yk 5 coefficient of variation of hydraulic

conductivity k;
ykeff 5 coefficient of variation of effective hydraulic

conductivity keff ; and
F 5 standard normal cumulative distribution

function.
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