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Reliability analysis of beams on random elastic foundations

D. V. GRIFFITHS�,† , J. PAIBOON�, J. HUANG† and G. A. FENTON‡,§

The classical problem of a beam on an elastic foundation has long been of practical interest to
geotechnical engineers, because it provides a framework for computing deflections not only of
foundations, but also of vertically oriented laterally loaded piles. The supporting soil can be modelled
as an elastic medium, which can be calibrated to represent the stiffness of the soils adjacent to the
beam (or pile). The objective of this paper is to study the influence of spatially random soil stiffness
on deformations of transversely loaded homogeneous piles and beams, using a combination of finite-
element analysis, random field theory and Monte Carlo simulations. Following code validation against
alternative solutions, the method investigates how the statistically defined soil stiffness (mean, standard
deviation and spatial correlation length) influences the mean and standard deviation of pile or beam
deflection. The goal of such an approach is to estimate the probability of deflections exceeding some
design threshold.
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INTRODUCTION
Analysis of a beam on an elastic foundation is a classical
problem first introduced by Winkler in the nineteenth cen-
tury and later developed by many other investigators, most
notably by Hetenyi (1946). These models represent the soil
stiffness perpendicular to the axis of the beam by a single
coefficient of subgrade reaction, k, which may be defined as
the ratio of the load per unit length to the local deflection
(e.g. Randolph, 1981). Commonly used solutions to this
system assume that the coefficient of subgrade reaction is
constant or linearly increasing with depth. In this paper,
however, the response of a laterally loaded beam or pile on
soil with spatially random stiffness is considered. Related
work has been reported using stochastic finite-element meth-
ods (e.g. Ramu & Ganesar, 1995; Zhang & Ellingwood,
1995) and using two-dimensional finite elements with ran-
dom fields (Haldar & Basu, 2011). In this study the authors
expand on previous work (Griffiths et al., 2008; Paiboon,
2008) using the random finite-element method (RFEM),
which accounts fully for spatial variability and local aver-
aging. In this method, conventional finite-element analysis of
a slender beam on a one-parameter elastic foundation (e.g.
Smith & Griffiths, 2004) is combined with random field
generation (e.g. Fenton & Vanmarcke, 1990) and Monte
Carlo simulations to develop output statistics for quantities
of interest, such as beam or pile deflection. The use of
linear elastic analysis in geotechnical engineering, especially
in the prediction of deformations at working stress levels,
remains a widely accepted model, provided the modulus is
fitted appropriately from laboratory test data, and at repre-
sentative strain and stress levels (e.g. Poulos & Davis, 1974,

1980; Poulos, 1989; Clayton, 2011).
The goal of the investigations described in this paper is to

obtain a probability of design failure or inadequate perform-
ance, as opposed to the conventional working stress ap-
proach, which leads to a factor of safety. For example, in
the analysis of a laterally loaded pile in a spatially random
soil, we might be interested in estimating the probability of
the top deflection exceeding some allowable design value. In
a foundation, we might be interested in the probability that
the differential settlement will exceed some acceptable level.
As will be shown, these design outcomes can be quantified
by counting realisations that give excessive deflections, or
by fitting a probability density function to the output.

The paper considers two examples: first, a laterally loaded
pile (Prakash & Sharma, 1990; Reese & Van Impe, 2001)
involving a soil of constant mean stiffness; and second, a
beam on a foundation of linearly varying mean stiffness
(Hetenyi, 1946).

REVIEW OF ANALYTICAL SOLUTIONS
Uniform k

The governing equation of a beam on a uniform elastic
foundation supporting a distributed load q is

EI
d4 y

dx4
þ ky ¼ q (1)

where EI is the flexural stiffness of the beam, k is the lateral
soil stiffness, and y is the transverse deflection at x.

From Fig. 1(a), the equation for the lateral deflection y at
any point x along a vertical pile of length L and flexural
stiffness EI embedded in a soil of constant lateral stiffness k
subjected to a lateral top load P is given as (Hetenyi, 1946)
where

y ¼ 2Pº

k

A1 � A2

A3

� �
(2a)

A1 ¼ sinh ºLð Þ cos ºxð Þ cosh º L� xð Þ½ � (2b)

A2 ¼ sin ºLð Þ cosh ºxð Þ cos º L� xð Þ½ � (2c)

A3 ¼ sinh2 ºLð Þ � sin2 ºLð Þ (2d)

The relative stiffness º between the pile and the surrounding
soil is given as
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º ¼
ffiffiffiffiffiffiffiffi

k

4EI

4

r
(3)

Hetenyi defined the dimensionless characteristic length of
the pile as ºL, where ºL < �=4 is a ‘short beam’,
�=4 , ºL < � is a ‘medium-length beam’, and ºL . � is a
‘long beam’. A long beam deforms with predominantly
bending deformations, whereas a short beam deforms as an
almost rigid body.

Linearly varying k
For the case of a linearly varying k, as shown in Fig. 1(b),

the present authors have modified Hetenyi’s (1946) formula-
tion by making the mid-point stiffness kC the reference value
rather than the end value, thereby avoiding the possibility of
dividing by zero. The linear stiffness function with gradient
c can then be written as

k ¼ kC � 1
2

L� 2xð Þc (4)

and the governing equation from equation (1) becomes

EI
d4 y

dx4
þ kC �

1

2
L� 2xð Þc

� �
y ¼ q (5)

For point loading as in Fig. 1, where q ¼ 0 in the majority
of elements, equation (5) can be divided by kC to give

d4 y

d�4
þ Æ�y ¼ 0 (6)

where

� ¼ 2kC � L� 2xð Þc
2kC

(7)

and

Æ ¼ k5
C

c4 EI
(8)

Continuing with Hetenyi’s formulation, the general solution
to equation (6) can be written as

y ¼ C1 y1 þ C2 y2 þ C3 y3 þ C4 y4 (9)

where

y1 ¼ 1� Æ

5!
�5 þ 6Æ2

10!
�10 � 6 3 11Æ3

15!
�15

þ 6 3 11 3 16Æ4

20!
�20� . . .

(10a)

y2 ¼ �� 2Æ

6!
�6 þ 2 3 7Æ2

11!
�11 � 2 3 7 3 12Æ3

16!
�16

þ 2 3 7 3 12 3 17Æ4

21!
�21� . . .

(10b)

y3 ¼
�2

2!
� 3Æ

7!
�7 þ 3 3 8Æ2

12!
�12 � 3 3 8 3 13Æ3

17!
�17

þ 3 3 8 3 13 3 18Æ4

22!
�22� . . .

(10c)

y4 ¼
�3

3!
� 4Æ

8!
�8 þ 4 3 9Æ2

13!
�13 � 4 3 9 3 14Æ3

18!
�18

þ 4 3 9 3 14 3 19Æ4

23!
�23� . . .

(10d)

Noting from equation (7) that

d�

dx
¼ c

kC

(11)

it is possible to obtain, by successive differentiation of
equation (9), the angular rotation Ł, bending moment M and
shearing force Q at any point on the beam as

Ł ¼ dy

dx
¼ dy

d�

d�

dx

� �
¼ c

kC

dy

d�
(12a)

M ¼ �EI
d2 y

dx2
¼ �EI

d2 y

d�2

d�

dx

� �2

¼ �EI
c

kC

� �2 d2 y

d�2

(12b)

Q ¼ �EI
d3 y

dx3
¼ �EI

d3 y

d�3

d�

dx

� �3

¼ �EI
c

kC

� �3 d3 y

d�3

(12c)

The known boundary conditions are the shear force Q and
bending moment M at each end of the beam, which for the
case shown in Fig. 1(b) are

M x¼0 ¼ 0, M x¼L ¼ 0

Qx¼0 ¼ �P Qx¼L ¼ P
(13)

leading to four linear simultaneous equations in the unknown
Ci, i ¼ 1, 2, 3, 4, as

d2 y

d�2

����
x¼0

¼ 0 (14a)

d2 y

d�2

����
x¼L

¼ 0 (14b)

k
EI
: linear
: constant kc

k
EI
: constant
: constant

P
x

L

P
x

P
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L/2

1
c

Fig. 1. Beam on an elastic foundation with (a) constant and
(b) linear stiffness
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d3 y

d�3

����
x¼0

¼ P

EI

kC

c

� �3

(14c)

d3 y

d�3

����
x¼L

¼ � P

EI

kC

c

� �3

(14d)

REVIEW OF FINITE-ELEMENT SOLUTION
While the finite-difference method has sometimes been

the preferred numerical solution technique for equation (1),
this paper uses the finite-element approach, which offers a
convenient vehicle for dealing with boundary conditions and
variable material properties, especially the random properties
described later in the paper. As shown in Fig. 2, a classical
slender beam element of stiffness EI is combined with a
foundation of stiffness k to give a modified ‘BOEF element’
(e.g. Smith & Griffiths, 2004).

The structural slender beam element stiffness matrix

k½ � ¼ 2EI

L3

6 3L �6 3L

3L 2L2 �3L L2

�6 �3L 6 �3L

3L L2 �3L 2L2

2
664

3
775 (15)

is augmented by the stiffness matrix due to the foundation
(essentially the beam ‘mass’ matrix)

m½ � ¼ kL

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2
664

3
775 (16)

to give the combined stiffness of the BOEF element as

k9½ � ¼ k½ � þ m½ � (17)

This is followed by assembly, implementation of boundary
conditions, introduction of loads and equation solution. Later
in this paper, the stiffness parameter k in equation (16) will
be treated as a random variable.

EXAMPLE PROBLEMS
Example 1: Laterally loaded pile in a soil of uniform stiffness

The first example is taken from Prakash & Sharma
(1990), and is of the type shown in Fig. 1(a). A pile of
length L ¼ 12.2 m and stiffness EI ¼ 9492 kN m2 is driven
into clay and subjected to a lateral top load of P ¼ 28 kN.
The lateral soil stiffness k is constant, and given by

k ¼ 5774 kPa. From equation (3), ºL ¼ 7.619: hence the pile
can be considered ‘long’.

The analytical solution of the deflection at the top (x ¼ 0)
for this case from equation (2) is given as y ¼ 6.1 mm,
which is compared with finite-element analysis using the
published software of Smith & Griffiths (2004) (program
p43) using two, four and eight equal-length beam elements
in Table 1. Good agreement is obtained using even the
coarsest finite-element mesh. Fig. 3 shows the deflected
shape as computed by the two methods over the entire
length of the pile.

Example 2: Foundation on a linearly varying foundation
The second example is adapted from Hetenyi (1946), and

is of the type shown in Fig. 1(b). A beam of length
L ¼ 3.048 m and stiffness EI ¼ 1033 kN m2 is subjected to
equal point loads at each end of P ¼ 20 kN. The underlying
foundation stiffness k decreases linearly from k ¼ 4826 kPa
at the left end (x ¼ 0) to k ¼ 689 kPa at the right end
(x ¼ L): hence kC ¼ 2758 kPa and c ¼ �1357 kPa/m, giving
Æ ¼ 45.56 from equation (8). From equation (3), by letting
k ¼ kC it is seen that ºL ¼ 2.755: hence the beam can be
considered medium length.

The analytical solution for this case from equations (4)–
(14) gives

y ¼ 0:0299y1 � 0:0300y2 � 0:0463y3 þ 0:1973y4 (18)

The end deflections are obtained by substitution of the
dimensionless variable � ¼ 1.7498 and � ¼ 0.2501 (corres-
ponding to x ¼ 0 and x ¼ L ¼ 3.048 m respectively) into
equations (10) to give y1, y2, y3 and y4, which in turn are
substituted into equation (18) to give the results shown in
the analytical column of Table 2. Substitution of a full range
of 1:7498 < � < 0:2501 into equations (10) gives the analy-

x

y

L

Beam stiffness, : kNm
Foundation stiffness, : kN/m

EI
k

2

2

q

Fig. 2. Beam on an elastic foundation element

Table 1. Top deflection (x 0) by finite-element and analytical
solutions (mm)

Analytical (equation (2)) FE solution: number of elements

2 4 8

6.1 5.8 5.9 6.0

0

1·0

2·0

3·0

4·0

5·0

6·0

7·0

8·0

9·0

10·0

11·0

12·0

13·0

�2·0 �1·0 0 1·0 2·0 3·0 4·0 5·0 6·0 7·0

D
ep

th
,

: mx

Deflection, : mmy

Eight elements

Hetenyi eq. (2)

Fig. 3. Deflected shape of Example 1 pile from finite-element and
analytical solutions
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tical deflection profile shown compared with an eight-finite-
element solution in Fig. 4.

PROBABILISTIC ANALYSIS
In this section the stiffness of the soil k is considered to

be a random variable. It is then possible to examine the
influence of the mean and standard deviation of k (�k , �k)
on the mean and standard deviation of the pile-top deflection
in the first test problem, and the mean and standard devia-
tion of the (differential) deflection at each ends of the beam
in the second test problem. In the more advanced analyses
using random fields, the spatial correlation length Łk (or
Łln k) and the probability density function of the random
foundation stiffness k are also considered.

Initially, the pile in the first test problem is analysed using
a simplified approach called the first-order second-moment
(FOSM) method.

Consider a nonlinear function Y of a single random
variable X

Y ¼ f (X ) (19)

where the mean and standard deviation of X are given as �X

and �X respectively. The mean and standard deviation of the
function Y by FOSM are then

�Y � f �Xð Þ (20)

� Y �
d f

dx
� X (21)

where the derivative term is evaluated at the mean, x ¼ �X :
Returning to test example 1, consider a simplified version

of Hetenyi’s formula from equation (2) for the pile top
(x ¼ 0) in which the quotient involving trigonometric and
hyperbolic functions is treated as a constant evaluated at the
mean k ¼ �k ¼ 5774 kN/m2: With other quantities fixed to

L ¼ 12.2 m and EI ¼ 9492 kN m2, as used by Prakash &
Sharma (1990), the following is obtained

sinh ºLð Þ cosh ºLð Þ � sin ºLð Þ cos ºLð Þ
sinh2 ºLð Þ � sin2 ºLð Þ ¼ 1:0000 (22)

Further inspection of this quotient reveals that it is remark-
ably constant for all reasonable values of k.

From equation (2), and noting the definition of º from
equation (3),

y ¼ 2Pº

k
¼ 1

k3=4

ffiffiffi
2
p

P

EIð Þ1=4
(23)

which after substitution of P ¼ 28 kN and EI ¼ 9492 kN m2

gives

y ¼ 4:0118

k3=4
(24)

Taking logs of both sides of equation (24) gives

ln y ¼ ln 4:0118� 0:75ln k

¼ 1:3892� 0:75ln k
(25)

If ln k and ln y are now treated as random variables in
equation (25), and noting there is a linear function (of the
ln k terms), FOSM will be exact, and application of equa-
tions (20)–(21) gives

�ln y ¼ 1:3892� 0:75�ln k (26)

� ln y ¼ 0:75� ln k (27)

If k is log-normal, and for now it is assumed that its
coefficient of variation Vk ¼ �k /�k ¼ 1.0 (i.e. �k ¼ �k ¼
5774 kPa), the properties of the underlying normal distribu-
tion of ln k are given by the transformation equations

� ln k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ V 2

k

� 	q
¼ 0:8326 (28)

�ln k ¼ ln �k � 1
2
� 2

ln k ¼ 8:3145 (29)

Hence from equations (26)–(27)

�ln y ¼ �4:8467 (30)

� ln y ¼ 0:6244 (31)

Assuming ln y is normal, it is possible to transform back to
the log-normal variable y using the inverse of equations
(28)–(29) to give

� y ¼ exp �ln y þ 1
2
� 2

ln y


 �
¼ 0:0095 m (32)

� y ¼ � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp � 2

ln y


 �
� 1

r
¼ 0:0066 m (33)

Example 2 is less amenable to analysis using a simplified
method such as FOSM, since the underlying foundation has

Table 2. Beam end deflections (x 0, x L) by finite-element and analytical solutions
(mm)

Analytical (equations
(4)–(14), (18))

FE solution: number of elements

2 4 8

x ¼ 0 x ¼ L x ¼ 0 x ¼ L x ¼ 0 x ¼ L x ¼ 0 x ¼ L

6.6 21.4 8.0 16.2 7.0 19.8 6.7 21.0

0

5·0

10·0

15·0

20·0

25·0

0 0·5 1·0 1·5 2·0 2·5 3·0 3·5

D
ef

le
ct

io
n,

: m
m

y

Position, : mx

Eight elements

Hetenyi, eqs. (4) 13)–(

Fig. 4. Deflected shape of Example 2 beam from finite-element
and analytical solutions
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a random stiffness k that varies linearly. This type of
problem needs a more advanced approach, such as the
RFEM described in the next section.

CHOICE OF LOG-NORMAL
It is known that stiffness cannot be negative, and has no

arbitrary upper bound. This means that its distribution must
be non-negative, and skewed to the right. There are a num-
ber of common distributions having these features, including
gamma, Weibull, Rayleigh, chi-square and log-normal, but
the authors are not aware of any statistical studies promoting
one of these distributions over the others for representing
soil stiffness. In any case, the shapes of these distributions
are all very similar, once the first two moments are specified,
and it is not expected that any of them will lead to
significantly different results. The log-normal distribution
was selected for the studies presented in this paper, because
of its simple relationship with the normal distribution, whose
joint distribution is entirely specified by the first two mo-
ments (mean and variance).

RANDOM FIELDS
In this section, spatially random soil adjacent to the pile

is introduced. This is intended to model highly variable soil
typical of some sites in which the soil stiffness is charac-
terised by a mean, a standard deviation and a spatial correla-
tion length. The RFEM developed by Griffiths & Fenton in
the early 1990s combines finite-element analysis with ran-
dom field theory (Fenton & Vanmarcke, 1990) in conjunc-
tion with Monte Carlo simulations. The methodology has
been applied successfully to several areas of geotechnical
engineering, and the interested reader is referred to Fenton
& Griffiths (2008) for greater detail of the methodology.

In this study, the pile is divided into 100 elements of
equal length, and a log-normal distribution of foundation
stiffness is mapped onto each element. The log-normal
random variable is defined by three parameters: the mean
(�k), the standard deviation (�k) and the spatial correlation
length (Łln k). A log-normally distributed random variable k
has a normally distributed ln k: thus the random field of k at
any particular location xi is generated using the transforma-
tion

k xið Þ ¼ exp �ln k þ � ln k Gn xið Þ
� 


(34)

Gn(xi) is a standard normal distribution with zero mean, unit
variance and spatial correlation function r(�) defined by

r �ð Þ ¼ exp
�2 �j j
Łln k

� �
(35)

where |�| is the absolute distance between any two points,
and Łln k is the spatial correlation length in log space. The
spatial correlation length can be thought of as the distance
(in length units) over which properties are reasonably well
correlated. For example, two points in a one-dimensional
random field separated by Łln k will have an average correla-
tion from equation (35) of about r(Łln k) � 0.14.

From equation (34), each element is assigned a k value
that varies from one element to the next. A small spatial
correlation length implies rapidly varying properties,
whereas a large spatial correlation length implies gradually
varying properties. Two random fields with the same mean
and standard deviation could have quite different spatial
correlation lengths. In the current work the spatial correla-
tion length has been expressed in dimensionless form as

¨ln k ¼
Łln k

L
(36)

where L is the total beam length.
Figure 5 shows a typical random field realisation of

foundation stiffness, where the dark and light regions depict,
respectively, stiff and less stiff soil.

The choice of soil parameters for probabilistic geotechni-
cal analysis (e.g. mean, standard deviation and spatial corre-
lation length) is generally site specific and often challenging,
owing to insufficient site data. There may be the additional
issue of anisotropy, since many sedimentary deposits exhibit
a longer spatial correlation length in the horizontal direction
than in the vertical. Boreholes are usually vertical, so more
is typically known about the vertical correlation length (e.g.
Fenton, 1999). There is an increasing bibliography, however,
recognising the importance of spatial correlation in probabil-
istic geotechnical analysis, which provides typical ranges of
probabilistic soil properties and spatial correlation lengths
(e.g. Lee et al., 1983; Phoon & Kulhawy, 1995; Duncan,
2000). For design purposes, however, and in the absence of
good spatial correlation data, the focus shifts to parametric
studies, and to an investigation of the worst-case spatial
correlation lengths that lead to the highest probability of
design failure and inadequate performance.

VARIANCE REDUCTION OVER A ONE-DIMENSIONAL
BEAM ELEMENT

The input statistics (�k , �k) are assumed to be provided
at the ‘point’ resolution, but each element is given a single
value of the random variable: thus local averaging must be
accounted for. The RFEM takes account of element size in
the random field generation, and delivers statistically consis-
tent values of the locally averaged properties. For a single
one-dimensional beam finite element of length l ¼ Æ lŁln k ,
where Æ l is a dimensionless length parameter, and a correla-
tion function given by equation (35), it can be shown (e.g.
Vanmarcke, 1984) that the local averaging variance reduc-
tion factor for a normal variant is given by

ª ¼ 2

Æ lŁln kð Þ2
ðÆ lŁln k

0

(Æ lŁln k � x) exp �2x=Łln kf gdx (37)

where ª ¼ � 2
k(A)=�

2
k , and � 2

k(A) is the variance after local
averaging. For the one-dimensional case, the variance reduc-
tion factor from equation (37) can be evaluated analytically
to give

P � 28 kN

P � 28 kN

Low Θlnk

High Θlnk

L � 12·2 m

L � 12·2 m

Fig. 5. Typical random fields of foundation stiffness mapped onto
a mesh of 100 elements in Example 1
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ª ¼ 1

2

2Æ l þ e�2Æ l � 1

Æ2
l

 !
(38)

It may be noted that arithmetic averaging of ln k applied
using equation (38) preserves the median of a log-normal
distribution of k, but causes both its mean and its standard
deviation to fall: thus �k(A) , �k and � k(A) , � k : The
laterally loaded pile model in Fig. 5 with 100 elements
(l ¼ 0.122 m) and a low spatial correlation length of
Łln k ¼ 1 m (Æ l ¼ 0.122) leads to a variance reduction factor
from equation (38) of ª ¼ 0.9234. A longer spatial correla-
tion length of Łln k ¼ 5 m (Æ l ¼ 0.0244) would give
ª ¼ 0.9839.

As an example, a log-normal variant with �k ¼ �k ¼
5774 kPa has underlying normal properties from equations
(28)–(29) of �ln k ¼ 0.8326 and �ln k ¼ 8.3145. Arithmetic
local averaging of ln k has no influence on �ln k , but for the
low spatial correlation length of Łln k ¼ 1 m mentioned
above, ª ¼ 0.9234 and � ln k(A) ¼ 0:8326

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9234
p

¼ 0:8001:
Finally, from the inverse equations (32)–(33) the locally
averaged parameters of the log-normal distribution become
�k ( A) ¼ 5623 kPa and �k ( A) ¼ 5324 kPa.

RESULTS OF RFEM ANALYSES
RFEM analysis of the BOEF problem involves generation

of a log-normal random field of foundation stiffness values
with user-controlled values of the mean (�k), standard
deviation (�k) and spatial correlation length (Łln k), as de-
scribed previously. These values are then mapped onto the
finite-element mesh, and a conventional deterministic BOEF
analysis performed to compute output quantities of interest
such as the end displacement. The process is then repeated;
a new random field is generated and a different displacement
is computed. While each new random field simulation in the
Monte Carlo process has the same underlying statistics, the
stiffer and less stiff parts of the foundation field occur in
different places, as shown in Fig. 5. For example, if a
particular simulation leads to lower stiffness values near the
top, then the top displacement would be relatively high. On
another simulation, higher stiffness values might occur near
the top, in which case the top displacement would be
relatively low. After a sufficient number of simulations have
been performed, the statistics of the top displacement stabi-
lise and can be interpreted probabilistically, as will be
discussed subsequently.

In this paper, only the foundation stiffness given as k in
equation (16) is treated as random, so all other quantities –
such as the beam stiffness, the dimensions and the loading
– are held constant.

Example 1: Laterally loaded pile in a random soil
The results of RFEM analyses with Monte Carlo simula-

tions are presented, based on a range of parametric varia-
tions of Vk and Łln k : A typical realisation of the random
foundation field for Vk ¼ 0.1 and Łln k ¼ 2 m is shown in
Fig. 6 using 100 elements. In all cases, the mean foundation
stiffness was held constant at �k ¼ 5774 kPa, as shown by
the dotted line.

Following each suite of 5000 Monte Carlo simulations,
the mean and standard deviation of the pile top deflection
(� y, �y) were calculated, and are shown plotted in Figs 7
and 8.

As observed in other elastic deformation problems with
variable stiffness (e.g. Griffiths & Fenton, 2009), the more
flexible parts of the system dominate the solution, and the
mean deflection � y is higher than the deterministic value

based on the mean for all combinations of Vk and ¨ln k , as
shown in Fig. 7. With a low Vk , the mean top deflection is
close to the deterministic result of 6.1 mm obtained with a
constant stiffness of k ¼ 5774 kPa from Table 1. For all Vk ,
the rate of increase of � y slows considerably for ¨ln k � 1,
and for the case when Vk ¼ 1 tends to the result obtained
using FOSM of � y ¼ 0.0095 m from equation (32).

The results for �y in Fig. 8 give a trend similar to those
obtained for � y, with values increasing for all combinations
of Vk and ¨ln k : Limiting cases, as might be expected, are
that �y ! 0 as Vk ! 0, and for larger values of ¨ln k �y

tends to the result obtained using FOSM from equation (33)
of �y ¼ 0.0066 m for the case when Vk ¼ 1. These checks
confirm that the single random variable approaches are
essentially special cases of RFEM when ¨ln k !1:

A final comment should be made relating to the limiting
case of vanishingly short correlation lengths, when ¨ln k ! 0.
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In this case, from equation (38), ª! 0, �kA ! 0, �kA !
Mediank ¼ e�ln k , and the foundation becomes essentially
homogeneous, with a constant stiffness given by k ¼Mediank :
The deterministic result corresponding to ¨ln k ¼ 0 is easily
checked. For example, if �k ¼ 5774 kPa and Vk ¼ 1, then the
Mediank ¼ 4083 kPa, and the deterministic top deflection will
be given from equation (2) as y ¼ 7.8 mm. All the curves in
Fig. 7 head toward their respective median values as
¨ln k ! 0. The graphs in Fig. 8 have not been produced to the
origin to avoid clutter, since as would be expected, in all
curves, �y ! 0 as ¨ln k ! 0.

When a second set of runs was performed using 1000
elements instead of 100, both the mean and the standard
deviation of the top deflection were lowered slightly for all
¨ln k . 0, as shown in Figs 7 and 8, indicating that the
results from the coarser mesh are slightly conservative. It
was noted, however, that all results converged on the deter-
ministic result corresponding to the median at ¨ln k ¼ 0.
With the more refined mesh, the minima in the mean
deflections as shown in Fig. 9 occurred at smaller values of
¨ln k and at lower values of � y: Although the details of the
response in this part of the plot exhibit mesh dependence,
the qualitative behaviour is believed to be correct: that is,
the tip experiences a stiffer response when ¨ln k is slightly
above zero, owing to the small increase in foundation
stiffness and variance. This observation is under further
investigation.

From a design viewpoint, however, the mesh-sensitive
differences observed in the location of the minima are not
of great concern, since the most conservative deflection
predictions are observed at higher spatial correlation lengths.
As will be discussed in the next section, it is when the mean
and standard deviation of deflection are greatest that the
probability of design failure is most likely to reach unaccep-
table levels.

Example 1: Probabilistic interpretation
Of interest in a laterally loaded pile problem might be

(for a given top load) an estimate of the probability that the
top deflection exceeds some allowable design value. In order
to make probabilistic interpretations from a Monte Carlo
analysis, it is possible either to count the number of simula-
tions that exceed the allowable deflection, or make an
assumption about the probability density function (pdf) that
best fits the output values, and then refer to standard
cumulative distribution tables. Since the foundation stiffness
values were assumed to be log-normal, it seems reasonable
to assume that the pdf of the top deflection is also log-
normal. Fig. 10 shows a histogram based on 5000 solutions
from the RFEM runs, together with a fitted log-normal
function based on the computed values of the mean and
standard deviation of � y and �y: Although objective good-
ness-of-fit tests can be performed, in the interests of brevity
it is noted here that the log-normal fit seems reasonable.

For argument’s sake, assume that the design has failed if

the top deflection exceeds 10 mm. Thus for any particular
parametric combination of Vk and ¨ln k , the intention is to
estimate P[y . 10 mm]. For the particular case shown in
Fig. 10, where ¨ln k ¼ 0.25 and Vk ¼ 0.6, about 657 out of
5000 simulations led to a top deflection greater than 0.01 m,
indicating a probability of failure of about pf ¼ 0.131. Based
on the fitted log-normal distribution, a very similar result
can be obtained using the following steps.

Sample calculation.

(a) For input values �k ¼ 5774 kPa, Vk ¼ 0.6 and ¨ln k ¼
0.25.

(b) From Monte Carlo simulations, � y ¼ 7.12 mm, �y ¼
2.64 mm (Vy ¼ 0.37 log-normal).

(c) Obtain parameters of underlying normal distribution of
ln y

� ln y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ V 2

y


 �r
¼ 0:359 and

�ln y ¼ ln � y � 1
2
� 2

ln y ¼ 1:898

P y . 10 mm½ � ¼ 1��
ln 10� �ln y

� ln y

" #

¼ 1�� 1:126½ � ¼ 0:130

where �(�) is the standard cumulative distribution
function.

Figure 11 shows the results of similar probabilistic calcula-
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tions for other typical values of Vk and ¨ln k : Probabilities
of failure corresponding to Vk < 0.2 were sufficiently small
on the scale of Fig. 11 that they are not shown.

Example 2: Beam on a random foundation with linearly
varying mean stiffness

The second example, as shown in Fig. 1(b), consists of a
beam on a random foundation with a linearly decreasing
mean stiffness. The mean foundation stiffness is given by

�k ¼ 4826� 1357x kPa (39)

and in this investigation it is assumed that the coefficient of
variation Vk is constant: thus the standard deviation also
decreases linearly, as given by

� k ¼ Vk 4826� 1357xð Þ kPa (40)

A typical realisation of the random foundation field for
Vk ¼ 0.1 and Łln k ¼ 0.5 m with 100 elements is shown in
Fig. 12. In all cases, the linearly varying mean foundation
stiffness given by equation (39) was maintained as shown by
the dotted line.

A range of parametric variation of Vk and ¨ln k was
considered with 5000 Monte Carlo simulations. To reduce
the volume of output, the authors have chosen to present the
statistics (�D, �D) of the differential settlement between the
ends of the beam following RFEM analysis, where
D ¼ yx¼L � yx¼0j j: The results are plotted in Figs 13
and 14.

As before, it is instructive to consider the limiting values
of ¨ln k : In the case of ¨ln k ! 0, the result becomes
essentially deterministic, with all stiffness values along the
length of the beam tending to their median values. For small
values of Vk the median is essentially the same as the mean,
and �D converges on the deterministic value of 14.8 mm, as
shown in Table 2. For larger values of Vk the median
stiffness falls, and both the end and differential settlements
tend to larger values as ¨ln k ! 0. For example, when

Vk ¼ 1, the mean differential settlement tends to about
18.3 mm. The results for the standard deviation of differen-
tial settlement are perhaps as expected, with �D heading to
zero as ¨ln k ! 0 for all Vk , and tending to level out at
higher values of ¨ln k :

Figures 13 and 14 both show a generally increasing trend
for �D and �D as ¨ln k increases, with the highest values
corresponding to higher values of Vk : These are similar
trends to those shown in the laterally loaded pile example in
Figs 7 and 8, which were validated analytically. Similar
analytical checks of the asymptotes at high values of ¨ln k

for this example with linearly varying mean stiffness are the
subject of ongoing analysis.

CONCLUDING REMARKS
The paper has described RFEM analyses of beams on

spatially random soil in order to investigate the influence of
statistically defined foundation stiffness on beam deflec-
tions. The cases considered were: (a) a laterally loaded pile
with soil stiffness described by a stationary random field
with a constant mean, standard deviation and spatial corre-
lation length; and (b) a beam supported on a soil with a
random stiffness defined by a linearly increasing mean,
constant coefficient of variation and spatial correlation
length. In all cases, the soil stiffness was assumed to be
log-normal.

Following deterministic validation against closed-form
solutions, a range of parametric studies were conducted
with the mean stiffness held constant. By varying the coef-
ficient of variation and spatial correlation length of the soil
stiffness, output quantities of interest such as the mean and
standard deviation of the pile top deflection, and the beam
end (differential) settlements, were computed. With the
exception of local averaging effects at small spatial correla-
tion lengths, the results show that increasing the coefficient
of variation of the soil stiffness results in an increase in the
mean and standard deviation of the pile and beam deflec-
tions. Increasing the spatial correlation length of the soil
stiffness also results in increased mean and standard devia-
tions of the pile and beam deflections, although this effect
levels out when the spatial correlation length approaches
the length of the pile or beam. In the case of the laterally
loaded pile, a probabilistic interpretation of the computed
results was demonstrated, showing how the probability of
excessive deflection above some design threshold can be
estimated.

The program used in this work, called rBOEF, together
with the entire suite of random finite-element programs in
source code developed by the authors for geotechnical analy-
sis (e.g. Fenton & Griffiths, 2008), is available for free
download at www.mines.edu/,vgriffit.
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NOTATION
Ci equation coefficients (i ¼ 1, 2, 3, 4)
c stiffness gradient

D differential settlement
EI flexural beam stiffness

f (.) function
k foundation stiffness

[k] element stiffness matrix
[k9] modified element stiffness matrix

kC centreline of foundation stiffness
L beam or pile length

M moment
[m] element ‘mass’ matrix

P point load
P[.] probability

Q shear force
q distributed loading

Vk coefficient of variation of k
X random variable
x spatial coordinate
Y random variable
y beam or pile transverse displacement

yi solution parameters (i ¼ 1, 2, 3, 4)
Æ dimensionless relative beam stiffness parameter
Æ l dimensionless element size parameter
ª variance reduction factor
Ł end rotation
Łk spatial correlation of k

Łln k spatial correlation of ln k
º relative stiffness parameter

�D mean of D
�k mean of k

�ln k mean of ln k
�X mean of X
�Y mean of Y
� dimensionless beam stiffness
r correlation coefficient

�D standard deviation of D
�k standard deviation of k

�ln k standard deviation of ln k
�X standard deviation of X
�Y standard deviation of Y
� distance between two points in the random field
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