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Describing how soil properties vary spatially is of particular importance in stochastic analyses of geotechnical problems,
because spatial variability has a significant influence on local material and global geotechnical response. In particular,
the scale of fluctuation θ is a key parameter in the correlation model used to represent the spatial variability of a site
through a random field. It is, therefore, of fundamental importance to accurately estimate θ in order to best model the
actual soil heterogeneity. In this paper, two methodologies are investigated to assess their abilities to estimate the vertical
and horizontal scales of fluctuation of a particular site using in situ cone penetration test (CPT) data. The first method
belongs to the family of more traditional approaches, which are based on best fitting a theoretical correlation model to
available CPT data. The second method involves a new strategy which combines information from conditional random
fields with the traditional approach. Both methods are applied to a case study involving the estimation of θ at three two-
dimensional sections across a site and the results obtained show general agreement between the two methods, suggesting
a similar level of accuracy between the new and traditional approaches. However, in order to further assess the relative
accuracy of estimates provided by each method, a second numerical analysis is proposed. The results confirm the
general consistency observed in the case study calculations, particularly in the vertical direction where a large amount of
data are available. Interestingly, for the horizontal direction, where data are typically scarce, some additional
improvement in terms of relative error is obtained with the new approach.

Keywords: spatial variability; random fields; soil heterogeneity; characterisation of soil/rock variability; geostatistics

1. Introduction

This paper compares the performance of two different
methods to estimate the vertical and horizontal scales of
fluctuation using in situ cone penetration test (CPT) data
from a particular test site. The first method will be
referred to as Approach A and is based on more
conventional (or classical) approaches. The second
method will be referred to as Approach B and involves
a new strategy which combines information from condi-
tional random fields with the traditional approach. To
illustrate and assess their relative performance, both
strategies are applied to a case study and the results are
evaluated. The goal of the paper is to answer the
following question: are conventional techniques for
estimating the correlation length as good as they can
be, or is there the possibility for improvement?

The scale of fluctuation θ is a convenient measure for
describing the spatial variability of a soil property in a
random field. It is a measure of the distance within
which points are significantly correlated (Vanmarcke
1984). Points separated by a larger distance than θ will
show little correlation, and practically no correlation will
be observed when points are separated by a significantly
larger distance than θ. This relationship between soil

property values and relative distances is contained within
the correlation model, which is a function of the lag τ
(i.e. distance between points) and the scale of fluctuation θ.
Some common correlation models are summarised in
Table 1, including the Gaussian model, the triangular
model, the spherical model and the Markov correlation
model used here. In each of these models, small values
of θ imply that the correlation function falls off rapidly
to zero with increasing τ (i.e. the correlation between
two points becomes rapidly smaller), which leads to
rougher random fields. In the limit, as θ→0, all points in
the domain become uncorrelated and the field becomes
infinitely rough. At the other extreme, for increasing
values of θ the soil property field becomes smoother, or,
in other words, the field shows less variability conver-
ging to a uniform field when θ→∞.

The correlation model is a fundamental ingredient in
the stochastic analyses of geotechnical problems, not
only because it describes how the soil property values
vary spatially throughout the geometrical domain, but
also, more importantly, because the spatial variation
itself has a significant influence on the response of the
geotechnical structure. This is of special interest, given
that random fields are typically used to model soil
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heterogeneity (i.e. inherent variability), in advanced
stochastic analyses (Fenton 1999; Fenton and Griffiths
2003; Hicks and Onisiphorou 2005; Fenton and Griffiths
2005; Griffiths, Huang, and Fenton 2009; Hicks and
Spencer 2010; Cassidy, Uzielli, and Tian 2013).

Perhaps due to the complexity associated with the
modeling of soil heterogeneity, however, little research
has been done to accurately describe its nature and this
has typically led to inherent variability being one of the
primary sources of uncertainty in stochastic analyses in
geotechnical engineering (Fenton 1999; Phoon and
Kulhawy 1999). The scale of fluctuation, in particular,
plays a key role in the description of soil variability at a
site. It is therefore crucial to estimate accurate values of
the vertical and horizontal scales of fluctuation in order
to obtain more realistic responses of the geotechnical
structure when using advanced probabilistic approaches.
Indeed, investigating scales of fluctuation from in situ
data is a subject of general interest in geotechnical
engineering, particularly with respect to the horizontal
plane. This is because, although a number of investiga-
tions appear in the literature for the vertical scale of
fluctuation (e.g. Fenton 1999; Hicks and Onisiphorou
2005), there is still rather limited information for the
horizontal direction. This is in spite of the fact that
researchers have demonstrated that the ratio of the
horizontal and vertical scales of fluctuation is an
important consideration in geotechnical computations
(Hicks and Samy 2002; Hicks and Onisiphorou 2005;
Hicks and Spencer 2010).

The aim of both strategies considered here, for the
estimation of the vertical and horizontal scales of
fluctuation, is to minimise the error between the assumed
theoretical correlation model and the estimated (or
experimental) correlation structure (the latter being
estimated from CPT data from the site being investi-
gated). In order to explore the performance of each
method, an extensive set of CPT data, from an artificial
sand island constructed offshore to provide a temporary
platform for oil and gas exploration, is considered. In
particular, CPT measurements from three vertical cross-
sections through the sand fill core of the island are
investigated. In Approach A (the first and more conven-
tional approach considered in this study), the CPT data
are solely used to estimate the experimental correlation
model in the horizontal and vertical directions for each
section, whereas, in Approach B, the CPT data are also
used to generate a conditional random field from which
the experimental correlation model is estimated. It is
believed that the use of a conditioned random field
makes more complete use of the available site informa-
tion, particularly when the data are scarce, and so should
provide a means of checking the accuracy of conven-
tional estimation techniques. Approach B starts by using
the CPTs to statistically describe the tip resistances qc of

the sand fill core of the island. The obtained statistics are
then used to generate a two-dimensional (2-D) random
field of qc, which is later constrained (conditioned) at the
CPT locations. This new conditional random field is
used to estimate the experimental correlation functions
for the site (in the horizontal and vertical directions),
which are then compared to the respective horizontal and
vertical theoretical correlation models to find the esti-
mated values of θ in each direction. Finally, the conven-
tional estimation techniques that are used in Approach A
(and which operate on the data directly) are employed to
obtain another set of correlation length estimates. The
two sets of estimates are then compared to assess the
relative accuracy of the two approaches.

2. Approaches used to estimate θ

Various methods are available to estimate the scale of
fluctuation. The simplest approach is probably to estim-
ate θ by best fitting the theoretical correlation model to
the experimental correlation function (Vanmarcke 1977;
Campanella, Wickremesinghe, and Robertson 1987;
DeGroot and Baecher 1993; Fenton 1999; Baecher and
Christian 2003; Wackernagel 2003; Uzielli, Vannucchi,
and Phoon 2005; Fenton and Griffiths 2008). Vanmarcke
(1984) and Wickremesinghe and Camapanella (1993)
proposed an alternative method, based on the concept of
variance function discussed in Vanmarcke (1977), which
has been used in several studies (Jaksa, Kaggwa, and
Brooker 1993; Hicks and Onisiphorou 2005; Lloret,
Hicks, and Wong 2012; Lloret-Cabot, Hicks, and Nuttall
2013). Other techniques, combining random field theory
with conventional approaches, have also been recently
proposed (Kim and Santamarina 2008; Zhang, Zhang,
and Tang 2008; Dasaka and Zhang 2012).

The two approaches used here to estimate θ are based
on the concept of best fitting the theoretical correlation
model ρ (τ),

q sð Þ ¼ exp
�2 sj j
h

� �
ð1Þ

to the estimated correlation function q̂ sð Þ

q̂ sj
� � ¼ 1

r̂2 k � jð Þ
Xk�jþ1

i¼1

Xi � l̂ð Þ Xiþj � l̂
� � ð2Þ

where l̂ and r̂ are the estimated mean and standard
deviation from the in situ CPT data and τj = jΔτ, with j =
1, 2, …, k, and k being the number of observations. Note
that, for the estimator given by Equation (2), it is
desirable that the data be equi-spaced (Fenton and
Griffiths 2008) at spacing Δτ.

Considering now the following error measure,

E ¼
Xk
j¼1

q̂ sj
� �� q sj

� �� �2 ð3Þ
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one may compute the value of θ that minimises E by
finding a root to the following expression:

∂E

∂h
¼ �

Xk
j¼1

2
sj
h2

q̂ sj
� �� exp

�2jsjj
h

� �� �
exp

�2jsjj
h

� �

ð4Þ
which can be expressed as:

Xk
j¼1

sj q̂ sj
� �� exp

�2jsjj
h

� �� �
exp

�2jsjj
h

� �
¼ 0 ð5Þ

For simplicity, the correlation model ρ (τ) is assumed to
have the exponential form shown in Equation (1), but
alternatives such as those summarised in Table 1 are also
possible (Fenton and Griffiths 2008).

In essence, both approaches presented in this paper
use the same idea of minimising the error between the
assumed theoretical and experimental correlation mod-
els. The main difference between Approach A (the
conventional approach) and Approach B (the new
method proposed) is how the experimental correlation
model is estimated. In Approach A, the experimental
correlation model q̂ sð Þ is simply estimated using Equa-
tion (2) with the CPT data directly, whereas, in
Approach B, q̂ sð Þ is estimated from the generated
conditional random field. A detailed description of how
the experimental correlation model is estimated when
using Approach B is summarised next.

The algorithm is equivalent in the vertical and
horizontal directions and comprises the following steps.
Further details are given in the next section where the
algorithm is applied to a case study.

(1) Find the linear depth trend of qc in each CPT
considered and remove it from the data. Calcu-
late the standard deviation σres of the de-trended
tip resistances for each CPT. Normalise each
individual set of de-trended tip resistances by
dividing by the corresponding standard devi-
ation σres. Each individual CPT is de-trended
and normalised in order to produce a standard
normal field (l̂ ¼ 0, r̂ ¼ 1).

(2) The correlation function is estimated separately
in the vertical and horizontal directions. For the
vertical direction, estimate the correlation func-
tion for each CPT, using Equation (2) with the
normalised de-trended tip resistances. Then
estimate the average vertical correlation func-
tion from the individual vertical correlation
functions. For the horizontal direction, estimate
the horizontal correlation function for different
depths, by using Equation (2) with the corre-
sponding normalised de-trended CPT tip resis-
tances for different horizontal lags. Then
average the correlation functions with respect
to depth to get the estimated average horizontal
correlation function for different lags.
Find the initial estimates of the vertical and
horizontal scales of fluctuation ĥv; ĥh

n o
0
, by

using Equation (5) with the averaged correlation
functions (this is Approach A). Set i = 1.

(3) Generate the ith standard normal random field
of normalised de-trended qc based on the
statistics found in (1) and (2), assuming that
the normalised de-trended tip resistances can be
represented by a standard normal distribution
function.

(4) Constrain the ith random field computed in (3)
at the locations of the CPT measurements, i.e.
resulting in the ith conditional random field. A
brief description of the implemented conditional
approach is given in the following section.

(5) Using Equation (2), with l̂ ¼ 0 and r̂ ¼ 1,
compute q̂i sð Þ from the ith conditional random
field calculated in (4).

(6) Use q̂i sð Þ, computed in (5), to find the root of
Equation (5) in the vertical and horizontal
directions, giving ĥv; ĥh

n o
i
.

(7) Update i = i + 1 and go to (3), repeating the
process until the number of simulations per-
formed is n.

(8) The final estimates of the vertical and hori-
zontal scales of fluctuation are the average
values computed in (6) of ĥv; ĥh

n o
i
, from i = 1

to n, where n is the number of simulations
performed.

The fact that each conditional random field is con-
strained at the known CPT measurements implies that
the field contains true information of the actual soil
variability at the site and, therefore, is likely to provide
a more realistic estimation of the correlation function
and thereby a better estimate of the scales of fluctuation
than the initial estimates given in (2) when using the
conventional approach (i.e. Approach A).

Table 1. Some common correlation models.

Correlation model Expression

Gaussian q sð Þ ¼ exp �p jsj
h

� 	2
� �

Triangular q sð Þ ¼ 1�jsj
h

0
if jsj�h
if jsj>h

�

Spherical q sð Þ ¼ 1�1:5 s
hj jþ0:5 s

hj j3
0

if jsj�h
if jsj>h

�

Markov q sð Þ ¼ exp �2jsj
h

n o
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2.1. Conditional random fields

The (unconditioned) random fields involved in the
conditional Approach B are generated using the Local
Average Subdivision (LAS) method proposed by Fenton
and Vanmarcke (1990). The LAS method requires a
probability density function (pdf) with its statistics (mean
µ and standard deviation σ) and a scale of fluctuation θ.
As mentioned earlier, the statistical information for qc in
this paper is estimated from the available field data at
each 2-D section investigated.

The generated 2-D random fields are then con-
strained (i.e. conditioned) at the locations of the actual
CPT measurements. The conditioning approach follows
the work of van den Eijnden and Hicks (2011), which
applied the Kriging interpolation technique (Krige 1951;
Cressie 1990; Wackernagel 2003; Fenton and Griffiths
2008) to give the best linear unbiased estimate of a
random field between known data. In essence, the
Kriging method estimates a random field Z at desired
locations x, from a linear combination of known values
of Z at m observation points xα. The Kriged interpolation
of Z at x (i.e. Z*(x)) can be expressed as follows:

Z� xð Þ ¼
Xm
a¼1

kaZ xað Þ with
Xm
a¼1

ka ¼ 1 ð6Þ

where λα are the m unknown weights that are determined
by minimising the variance of the difference between the
Kriged field Z* and the original field Z (Wackernagel
2003). Kriging can be used to condition the random field
at the known (conditioning) points, as summarised in the
following four steps (Journel and Huijbregts 1978; van
den Eijnden and Hicks 2011).

(1) Generate an unconditional random field Zs(x)
with known point statistics and correlation

structure, and extract the values of Zs(x) at the
locations xα (i.e. Zs(xα) for α = 1 to m).

(2) Generate an initial interpolated field Z�
0 (x) by

Kriging, using the known (conditioning) mea-
surements Z(xα) at the locations xα and accord-
ing to the assumed correlation model.

(3) Generate Z�
s (x) by Kriging using the values

Zs(xα) calculated in step (1).
(4) Calculate the conditional random field Zcs(x) as:

Zcs xð Þ ¼ Zs xð Þ � Z�
s xð Þ� �þ Z�

0 xð Þ ð7Þ

3. Application to a real case study

Numerous artificial islands were constructed during the
1970s and 1980s in the Canadian Beaufort Sea to
provide temporary structures for hydrocarbon explora-
tion. One type of island used caisson technology to
reduce the required fill volumes (Hicks and Smith 1988).
Figure 1a shows that this type of island incorporated two
main sand fills: (1) an underwater berm on which the
caisson was founded and (2) the body of the island
structure (referred to as the core). This paper investigates
data from one such island, Tarsuit P-45. In particular, 18
CPTs from the site are used here to statistically describe
the tip resistances qc of the sand fill core, these CPTs
lying along three straight lines in a plan view of the core,
as shown in Figure 1b. The number of CPTs aligned
along the first, second and third sections are seven, six
and five, respectively, and each line of CPTs indicates
the soil variability for that 2-D section (denoted as AA′,
BB′ and CC′ in Figure 1b). For simplicity, the same
geometry of 50 m length by 5.5 m depth is considered
for all three sections. Note that, in order to be consistent
in the geometry of all three sections analysed, all CPT

0 10 20 30 40 50 60
Horizontal x; m

A 9m 9m 8m 2m 8m 9m A’
CPT01 02 03 0405 06 CPT07

B 5.5m 1.5m 7m 5.5m 9.5m

CPT08 0910 11 12 CPT13
B’

C 10m 8m 10m 8m

CPT14 15 16 17 CPT18
C’

 

 
CC’ section
BB’ section
AA’ section

(a)

(b)

Figure 1. Test site: (a) side view sketch of Tarsuit P-45 core and berm (not to scale) and (b) plan view of CPT locations used.
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measurements investigated are located in a depth range
of 1–6.5 m (see Figure 2).

The statistics obtained for each section are used to
generate a 2-D random field of normalised de-trended qc,
which is later constrained (conditioned) at the corre-
sponding CPT locations. The statistical characterisation
of the sand fill core of Tarsuit P-45 follows previous
research by Wong (2004) and is only briefly summarised
below.

Figure 2 shows the CPT tip resistance data for each
section investigated. In the plots, the thin broken lines
indicate qc values for individual CPT profiles, whereas
the thicker straight dashed lines indicate the average
linear mean trend between 1 and 6.5 m. The mean and
standard deviation of qc are calculated separately for
each section to give the average values summarised in
Table 2. Inspection of Figure 2 shows that the average
linear depth trend is very similar for the three sections,
indicating a similar underlying depth-dependency of the
qc values. This is also illustrated in Table 2, where the
average slope and intercept of the linear trend identified
in each section are similar.

A standard normal distribution is used to represent
the normalised de-trended cone tip resistances of the
Tarsuit P-45 core. Figure 3 shows the histograms based
on all data from the CPTs involved in the section
analysed, as well as the fitted distribution. Inspection of
this figure shows that, for the three sections investigated,
the variation of normalised de-trended tip resistance is
reasonably well-represented by a standard normal distri-
bution. On the right-hand-side of this figure, the normal-
ised de-trended CPT data used for each histogram are
plotted.

The estimates of the vertical and horizontal scales of
fluctuation when using Approach A are summarised in
Table 3. Note that these are the initial guesses used in
Approach B when using the conditional random field.

Figures 4 and 5 show the estimated correlation functions
from Approach A as dashed lines, for the vertical and
horizontal directions, respectively. Note that the correla-
tion estimates become increasingly variable as the lag
increases, due to there being fewer data pairs available
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Figure 2. CPT tip resistance data, including the average linear mean trend lines: (a) section AA′, (b) section BB′ and (c) section CC′.

Table 2. Cone tip resistance statistics.

Property Range
Mean
value

Section AA′ (7 CPTs)
Mean (µ): MPa 3.00–5.55 3.85
Standard deviation (σ): MPa 0.71–3.01 1.50
Standard deviation (σres): MPa
(trend removed)

0.69–2.37 1.35

Slope of the linear depth trend
(atrend): MPa/m

0.11–1.18 0.36

Intercept of the linear depth trend
(btrend): MPa

1.09–3.72 2.48

Section BB′ (6 CPTs)
Mean (µ): MPa 2.70–4.55 3.58
Standard deviation (σ): MPa 0.40–1.28 0.85
Standard deviation (σres): MPa
(trend removed)

0.39–1.01 0.55

Slope of the linear depth trend
(atrend): MPa/m

0.04–0.68 0.39

Intercept of the linear depth trend
(btrend): MPa

1.20–2.72 2.06

Section CC′ (5 CPTs)
Mean (µ): MPa 3.37–3.86 3.59
Standard deviation (σ): MPa 0.75–1.68 1.29
Standard deviation (σres): MPa
(trend removed)

0.51–1.51 0.85

Slope of the linear depth trend
(atrend): MPa/m

0.33–0.84 0.58

Intercept of the linear depth trend
(btrend): MPa

0.62–2.31 1.36
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with larger lags (Fenton and Griffiths 2008). This is
particularly evident for section CC′, as well as for later
simulations in the paper. The theoretical correlation
function (using the estimated value of θ from Approach
A) is represented by a thick solid line. Inspection of

Figure 4 shows that very similar initial estimates of θv
are obtained for the three sections (see also Table 3),
indicating that this part of the sand fill island core
exhibits a consistent vertical variability of qc. However,
as shown in Figure 5, this is not apparent for the hori-
zontal direction, where the differences between initial
estimates for θh are much larger and range from 1.69 m
to 13.69 m. Although this large range of values may be
due in part to actual soil variation, the scarcity of data
will also lead to large variability in the estimates.

A 2-D standard normal random field is generated
for each section analysed, using the initial values of
the scales of fluctuation obtained from Approach A
(see Table 3). Each generated random field is subse-
quently conditioned at the observed CPT locations by
the CPT data, yielding conditional random fields similar
to those illustrated in Figure 6. Note that, in the plots of
Figure 6, the scales in the vertical and horizontal
directions are not the same.

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

(qc−trend)/σ
res

P
D

F

 

 
CPT DATA
NORMAL DISTRIBUTION FIT

−4 −2 0 2 4

0

1

2

3

4

5

6

7

(qc−trend)/σ
res

D
ep

th
 b

el
ow

 s
an

d 
su

rf
ac

e,
 y

; m

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

(qc−trend)/σ
res

P
D

F

 

 
CPT DATA
NORMAL DISTRIBUTION FIT

−4 −2 0 2 4

0

1

2

3

4

5

6

7

(qc−trend)/σ
res

D
ep

th
 b

el
ow

 s
an

d 
su

rf
ac

e,
 y

; m
−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

(qc−trend)/σ
res

P
D

F

 

 
CPT DATA
NORMAL DISTRIBUTION FIT

−4 −2 0 2 4

0

1

2

3

4

5

6

7

(qc−trend)/σ
res

D
ep

th
 b

el
ow

 s
an

d 
su

rf
ac

e,
 y

; m

(a)

(b)

(c)

Figure 3. Histograms of normalised de-trended tip resistance: (a) section AA′, (b) section BB′ and (c) section CC′.

Table 3. Estimated values of the scales of fluctuation.

Property
Approach

A
Approach

B

Section AA′ (7 CPTs)
Vertical scale of fluctuation (θv): m 0.42 0.41
Horizontal scale of fluctuation (θh): m 1.69 1.82
Section B′ (6 CPTs)
Vertical scale of fluctuation (θv): m 0.42 0.42
Horizontal scale of fluctuation (θh): m 5.07 5.60
Section CC′ (5 CPTs)
Vertical scale of fluctuation (θv): m 0.44 0.40
Horizontal scale of fluctuation (θh): m 13.69 15.86
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From each of the conditional random fields, it is
straightforward to estimate the corresponding correlation
structure by using Equation (2), which can then be
compared against the theoretical correlation model in
each direction in order to estimate the value of θ (i.e. as a
root of Equation (5)). The average of the vertical and
horizontal scales of fluctuation, over the total number of
realisations n, gives the estimated values of θv and θh
when using Approach B (see Table 3). For the analyses
presented in this section, the total number of realisations
considered is n = 100. Figures 7 and 8 illustrate the
estimated correlation function for the vertical and hori-
zontal directions, respectively, for all realisations when
using Approach B. In the figures, the thicker solid line
indicates the theoretical correlation structure ρ (τ) using
the estimated value of θ; the thinner fine lines indicate
each of the estimated q̂i sð Þ and the thick dashed line
indicates the average of all the estimated q̂i sð Þ.

Overall, Figure 7 shows that the theoretical correla-
tion structure is a satisfactory fit to q̂ sð Þ for the three
sections considered. The results for section AA′ in the
vertical direction (Figure 7a) suggest an average of θv =

0.41 m, while for section BB′ (Figure 7b) the average is
θv = 0.42 m, and for section CC′ (Figure 7c) the average
is θv = 0.40 m. The results suggest that the variability in
the vertical direction is very consistent across the
sections considered (Table 3).

A larger variation is observed in Figure 8 when
looking at the estimated horizontal correlation functions
for sections AA′, BB′ and CC′. Section AA′ shows an
average of θh = 1.82 m, whereas sections BB′ and
CC′ give, respectively, θh = 5.60 m and θh = 15.86 m
(Table 3). A possible explanation for these differences is
that less CPT measurements (i.e. true data points) are
available in the horizontal direction. Also, the horizontal
distance between CPTs is relatively large compared to
the obtained θh (see Figures 1 and 5), resulting in only a
few true data points over the initial part of the estimated
correlation structure (τh < θh), which is, indeed, the most
relevant part of the curve when estimating the θ of the
correlation model. Conversely, in the vertical direction,
true measurements are available every 0.02 m (i.e. the
vertical distance between each CPT measurement) and
this distance is, conveniently, significantly smaller than
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Figure 4. Estimated values of the vertical scale of fluctuation
when using Approach A: (a) section AA′, (b) section BB′ and
(c) section CC′.
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the obtained θv. This is well illustrated in Figure 4, where
many true data points are available in the relevant part of
the curve (i.e. τv < θv), providing more confidence in the
estimated value of θv than that of θh obtained for the
horizontal case.

4. Accuracy assessment

A fundamental part of the investigation is to assess the
accuracy of the two approaches used to estimate θ.
This section aims to address this issue by proposing a
numerical strategy and applying it to a fictitious site with
the same geometry as analysed in the previous case
study. A 2-D random field of normalised de-trended tip
resistances is generated with known or true statistics
(µ = 0, σ = 1, θv= 0.5 m and θh= 5 m). From this
fictitious site 7 CPTs are extracted at the same locations

given in Figure 1b for section AA′. The seven CPTs are
then used to calculate the statistics of qc in the same
manner as explained earlier for the case study. Approach
B detailed in the previous section is then applied to find
estimated values of the vertical and horizontal scales of

fluctuation. A number of pairs ĥv; ĥh
n o

j
are obtained by

repeating this process from j = 1 to k, i.e. over k
realisations of the random field of normalised de-trended
tip resistances. In order to assess the accuracy of the new
approach for estimating θ, the statistics from all pairs

ĥv; ĥh
n o

j
can be compared against the true values of θ

hv; hhf g used to generate the initial random tip resistance
fields. Similarly, the initial estimated pairs of vertical
and horizontal scales of fluctuation ĥv; ĥh

n o
0; j
, obtained

using Approach A, can be used to assess the accuracy of
the conventional approach. The steps for assessing the
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Figure 6. Typical realisation of a conditional random field of normalised de-trended tip resistance, for a 2-D section of the test site: (a)
section AA′, (b) section BB′ and (c) section CC′.
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relative accuracy of the conventional and proposed new
approach are summarised as follows:

(1) Set j = 1.
(2) Generate a generic (non-conditional) random

field of tip resistances with known statistics
(µ = 0, σ = 1, θv and θh), assuming a standard
normal distribution.

(3) Extract l CPTs at the appropriate locations.
(4) Using these l CPTs, estimate the statistics

ĥv; ĥh
n o

0;j
in the same manner as described in

the case study (Approach A).
(5) Estimate ĥv; ĥh

n o
j
using Approach B:

a. Generate the ith standard normal random
field of normalised de-trended qc based on
the statistics found in (4). Set i = 1.

b. Constrain the ith random field computed in
(a) at the locations of the CPT measurements
from (3), resulting in the ith conditional
random field.

c. Using Equation (2) with l̂ ¼ 0 and r̂ ¼ 1,
compute q̂i sð Þ from the ith conditional
random field calculated in (b).

d. Use q̂i sð Þ, computed in (c), to find the root
of Equation (5) in the vertical and horizontal
directions, giving ĥv; ĥh

n o
i
.

e. Update i = i + 1 and go to (a), repeating the
process until the number of simulations
performed, n.

f. The final estimates of the vertical and
horizontal scales of fluctuation, ĥv; ĥh

n o
j
,

are the average values computed in (d) of
ĥv; ĥh

n o
i
from i = 1 to n, where n is the

number of simulations performed.
(6) Update j = j+1 and go to (2), repeating the

process until k realisations have been performed.
(7) Compare the output pairs of values, ĥv; ĥh

n o
0; j

and ĥv; ĥh
n o

j
, against the true θv and θh used in

(2) to assess the accuracy of the classical and
new approaches.

The above steps for assessing the accuracy of the
approaches used for the determination of the scales of
fluctuation are applied to section AA′ (Figure 1b). Table 4
summarises the relevant information obtained from the
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Figure 7. Estimated values of the vertical scale of fluctuation
when using Approach B: (a) section AA′, (b) section BB′ and
(c) section CC′.
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Figure 8. Estimated values of the horizontal scale of fluctuation
when using Approach B: (a) section AA′, (b) section BB′ and
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30, i.e. k = 30, random fields generated in the proposed
algorithm to assess the accuracy of Approaches A and B.
In Approach B, i.e. steps (a) to (f), the number of
simulations considered to estimate the final statistics is
n = 35. The results presented in this table summarise the
estimated values of the scales of fluctuation obtained
using Approach A (the conventional approach) and the
estimated values obtained using Approach B. The true
values of the vertical and horizontal scales of fluctuation
are included in the table and are used to assess the
accuracy achieved in the estimates provided by each
method.

The average of the 30 initial estimates of θv (i.e.
Approach A) is 0.51 m, giving a relative error of about
2% (Table 4). Similar values are obtained when using
Approach B: an average θv = 0.53 m, giving a relative
error of about 5%. In other words, in the vertical
direction where data are plentiful, both approaches give
accurate results. In the horizontal direction, the results
obtained when using Approach B are significantly better
than those obtained via the conventional approach.
Specifically, when using Approach A the average is
θh = 3.66 m and the relative error is about 27%, whereas,
when using Approach B, the average is θh = 3.99 m and
the relative error is now about 20% (Table 4). The
decrease in relative error from 27% (Approach A) to
20% (Approach B) is quite significant given the funda-
mental problems with estimating a scale of fluctuation
using a relatively large sampling length and few sample
points.

The results of Table 4 show that the conventional
approach provides reasonable initial estimates for θv and
θh. Indeed, the values obtained for the vertical scale of
fluctuation are extremely successful for both approa-
ches, due to the large amount of data available for the
calculation of θv. However, some improvement is
obtained with Approach B in the horizontal direction,
when fewer data are available. The better match to the
true horizontal scale of fluctuation may be due to the
algorithm using the available site information more
effectively (Lloret-Cabot, Hicks, and van den Eijnden
2012). By constraining the random fields, at the
locations of the actual CPT measurements, improved

approximations of the qc values in between the CPT
locations are possible, resulting in a more realistic
estimation of the horizontal correlation function and a
better estimation of the average θh (Table 4).

5. Conclusions

Two approaches for estimating the vertical and hori-
zontal scales of fluctuation have been presented and
subsequently applied to a real case study and then to a
simulation-based study to assess relative accuracy.

The accuracy of the estimate of the scale of fluc-
tuation is, of course, highly dependent on both the
number of data and their spacing. For example, if the
true correlation length is 0.1 m and data are spaced by
1.0 m, then an accurate estimate of the correlation length
will not be possible. Similarly, if a small number of
observations, at any spacing, are available, the estimate
will be worse than if a large number of observations are
available. In the case study considered in this paper, the
vertical scale of fluctuation is expected to be estimated
much more accurately than the horizontal scale of
fluctuation, due to both the much larger number of
observations and the closer spacing of the data in the
vertical direction. However, the goal of the paper was to
see if different methods could be used to coax a better
estimate when samples are scarce.

For the case study, the vertical and horizontal
correlation lengths suggested by both approaches are
similar. In particular, the estimated values of θv are very
close for the three sections analysed, suggesting that the
variability in the vertical direction is very consistent
across the sections considered. This is not the case,
however, for the horizontal scale of fluctuation, where
each section converges to a significantly different mean
value, suggesting that θh has different values at each
section analysed and/or that the CPTs are not spaced
closely enough for an accurate estimation of θh.

The simulation-based study suggests that there is not
much difference between the two approaches when the
sampling distance is small relative to the correlation
length, as there are then plenty of data for estimating θ
(i.e. in the vertical direction). This confirms the finding
in the case study that, for the vertical direction, the
conventional approach already provides a reasonable
estimate of θv, because enough data are already avail-
able. However, when the sampling distance is large
relative to the correlation length and there are few data
values (e.g. in the horizontal direction), the conditional
random field approach shows some improvement over
the conventional approach, with the horizontal correla-
tion length being somewhat closer to the true value. The
difference is quite significant, with the relative error
decreasing from 27% in the case of the conventional
approach to 20% in the case of the conditional random

Table 4. Relative error between true and estimated values of θ
using the two approaches.

True values Approach A Approach B

θv(m) θh(m) θv,0 (m) θh,0 (m) θv,j (m) θh,j (m)

Mean error
(µ): m

0.5 5 0.51 3.66 0.53 3.99

Error – – 2% 27% 5% 20%
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field approach, which is a quite remarkable improvement
given the fundamental problems with estimating a scale
of fluctuation using a relatively large sampling length
and few sample points.

The results of this study indicate that, for most
practical purposes, the conventional approach to estim-
ating the spatial correlation length is adequate, especially
when large amounts of data are available. However,
when some improvement is desired, particularly when
data are scarce, the use of conditional random fields is
worth considering.
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