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This paper presents a simple regression to predict settlement of a single floating pile supported by a
homogeneous elastic soil and subjected to a vertical load. The regression, which is calibrated by a finite
element model, allows the direct computation of the pile length required for serviceability limit state
design of deep foundations.
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1. Introduction

Deep foundations, or piles, are structural members, usually
made of steel, concrete, and/or timber, which transmit some or
the entire applied load to ground below the surface. Piles resting
on a stiffer stratum are called end-bearing. If not end-bearing, they
are called floating, in which case most of the resistance is derived
from skin friction and/or cohesion. In this paper, only floating piles
are considered and end-bearing is ignored.

As load is applied to the pile, the pile settles due to both defor-
mation of the pile itself and deformation of the surrounding soil.
Assuming that the surrounding soil is perfectly bonded to the pile
shaft through friction and/or adhesion, any displacement of the
pile is associated with an equivalent displacement of the adjacent
soil. Following the classic work of authors such as [6,7,10], the soil
is assumed to be linearly elastic, so that this displacement is re-
sisted by a force which is proportional to the soil’s elastic modulus
and the magnitude of the displacement. Thus, the support provided
by the soil to the pile depends on the elastic properties of the sur-
rounding soil. As stated by Vesic [10], the pile settlement is a con-
stant (dependent on Poisson’s ratio and pile geometry) times F=Es,
where F is the applied load and Es is the soil’s elastic modulus.

The main objective of this note is to present a simple formula
predicting the settlement of a single floating pile within an elastic
soil. To accomplish this, a regression model is developed based on
finite element results. One of the primary benefits of the model is
that it is easily inverted to allow a direct computation of the pile
length, H, required for the serviceability limit state design of float-
ing piles.

The pile is assumed to be placed in a three-dimensional uniform
(spatially constant) elastic soil. A vertical load is applied to the pile
and the settlement of the pile is calculated using a linear elastic fi-
nite element model [9,4,3]. The pile itself is assumed to be square,
for reasons to be discussed later, with fixed cross-sectional dimen-
sion d� d.

The remainder of this paper is organized as follows: In Section 2,
an analytical result is presented for the settlement of a pile under a
given load, and a regression is developed and calibrated using a lin-
ear elastic finite element model, which can be used to easily com-
pute pile length required for serviceability limit state design.
Conclusions are presented in Section 3.

2. Methodology

Prediction of elastic pile settlement has been studied previously
by various authors [6,7,2,1]. The settlement prediction used in this
paper has the same form as suggested by Poulos and Davis [6] and
Randolph and Wroth [7], for a single cylindrical pile embedded in a
homogeneous elastic soil,

d ¼ F
Esd

Ip ð1Þ
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List of Symbols

ai settlement prediction parameter
d pile diameter
Es soil elastic modulus
Ep pile elastic modulus
F applied load
H pile length
Ip settlement influence factor

k pile to soil stiffness ratio ¼ Ep=Es

lx pile location measured from the left edge of the soil
mass (x ¼ 0)

d pile settlement, positive downwards
f variable in Randolph’s prediction for Ip

k variable in Randolph’s prediction for Ip

ms Poisson’s ratio
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where d is the settlement at the top of the pile, F is the applied
load, Es is the elastic modulus of the soil, and d is the diameter
of the pile shaft. Ip is a settlement influence factor which depends
on a number of parameters such as Poisson’s ratio of the soil, ms,
the pile slenderness ratio, H=d, where H is the pile length, and
the pile to soil stiffness ratio, k ¼ Ep=Es; Ep being the pile elastic
modulus.

The following expression derived from closed-form solutions
obtained by Randolph and Wroth [7], can be used to calculate Ip

for a constant diameter cylindrical floating pile:

Ip ¼4ð1þmsÞ 1þ 1
pk

8
ð1�msÞ

tanhðlHÞ
lH

H
d

� ��
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with

f ¼ ln½5ð1� msÞH=d�

lH ¼ ð2H=dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðfkÞ

p
k ¼ 2ð1þ msÞEp=Es

For piles shorter than 0:25d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ msÞEp=Es

p
, Fleming et al. [5]

suggest that the settlement coefficient, Ip, should become

Ip ¼
ð1þ msÞ
1

ð1�msÞ þ
p
f

H
d

ð3Þ

However, for piles longer than 1:5d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ msÞEp=Es

p
, Fleming et al.

[5] suggest that the value of tanhðlHÞ approaches unity and hence
Eq. (2) reduces to

Ip ¼
2ð1þ msÞ

ffiffiffiffiffiffiffiffiffiffi
2f=k

p
p

ð4Þ

Furthermore, Fleming et al. [5] state that, for long piles, the pile
response should become independent of pile length, since very lit-
tle load reaches the base of the pile which is reasonable. However,
both Eqs. (2) and (4) show a slow increase in settlement with pile
length when the pile length exceeds 1:5d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ msÞEp=Es

p
, which is

unexpected. It is believed that this slow increase is merely an arti-
fact of approximations made in the settlement predictions and
should be ignored.

Eq. (2) is not easily inverted to solve for the pile length, H. In
this paper a simpler power function of the form

Ip ¼ a0 þ
1

ðH=dþ a1Þa2
ð5Þ

has been found to fit the Ip values estimated using 3-D finite ele-
ment analysis for various values of k and H=d. The calibration of Ip

will be discussed shortly.
Substituting Eq. (5) into Eq. (1) results in the following settle-

ment prediction
d ¼ F
Esd

a0 þ
1

ðH=dþ a1Þa2

� �
ð6Þ

The primary motivation of the functional form assumed in Eq.
(5) is that it is easily inverted and solved for H. For a given Ip value,
inverting Eq. (5) and solving for H gives,

H ¼ d
1

Ip � a0

� �1=a2

� a1

" #
¼ d

1
ðdEsd=FÞ � a0

� �1=a2

� a1

" #
ð7Þ

The calibration of the settlement influence factor, Ip, given by
Eq. (5) can be achieved either by fitting Eq. (5) to Eq. (2), or by fit-
ting Eq. (5) to elastic FE results. The latter was selected in this
study because Eq. (2) is not asymptotic to a minimum value and
begins to erroneously increase for piles longer than
1:5d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ msÞEp=Es

p
. The FE results, on the other hand, do tend

to a minimum value as the pile length increases.
This work looks specifically at the cases where the pile to soil

stiffness ratio k ¼ Ep=Es ranges between 200 and 1000. The calibra-
tion of Ip is done here by calculating the settlement of a pile of
length H surrounded by a soil with uniform elastic modulus
Es ¼ 30 MPa, Poisson’s ratio ms ¼ 0:3, and supporting load
F ¼ 1:6 MN using the finite element method. Note that the settle-
ment coefficient, Ip, depends on k ¼ Ep=Es and not on Es directly
nor does it depend on F. The dependence on ms is only slight, show-
ing changes of no more than about 5% for ms ranging from 0.1 to 0.4,
with higher values showing slightly less settlement. The pile is
founded in a three-dimensional linearly elastic soil mass. The mesh
selected is 50 elements by 30 elements in plan by 30 elements in
depth, as shown in Fig. 1. Eight-node brick elements are used with
dimensions: 0:3 m by 0:3 m in the X, Y (plan) and by 0:5 m in the Z
(vertical) directions. Within this mesh, the pile is modeled as a col-
umn of elements having depth H and elastic modulus ranging from
6 GPa to 30 GPa (which are several orders of magnitude higher
than that of the surrounding soil). Thus, the pile is assumed here
to be of square cross-section with dimension d ¼ 0:3 m and depth
ranging from 1 to 10 m (a maximum pile length of 10 m was se-
lected to avoid boundary effects with the base). The pile is placed
in the middle of the mesh where the pile settlement is computed
more accurately due to the minimized influence of boundary con-
ditions on pile settlement (to be discussed later). Because the stiff-
ness matrix of a 50 by 30 by 30 element mesh requires about 2
GBytes of memory, a conjugate gradient iterative solver is em-
ployed in the finite element model to avoid the need to assemble
the entire stiffness matrix in the finite element analysis.

The proposed methodology to develop a simple relationship to
predict elastic pile settlement proceeds as follows:

(1) A finite element prediction of pile settlement is performed
for each of a range of pile lengths H ¼ 1; . . . ;10 m, for given
F ¼ 1:6 MN, k ¼ Ep=Es; d ¼ 0:3, and ms ¼ 0:3, resulting in a
set of settlement values, d. Fig. 2 illustrates one such
analysis.



F

15 (m)

15
 (

m
)

X

Z

Fig. 1. Typical mesh of 8-node square elements (50 by 30 by 30 elements).
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Fig. 3. Calibration of d using FE model for k = 200, 300, 500, and 1000, produced by
substituting Eq. (8) into Eq. (6).
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(2) Ip is computed for each H=d value by inverting Eq. (1). A
function of the form given by Eq. (5) is then fit by regression
to the finite element results, leading to a set of ai values,
i ¼ 0;1;2.

(3) Steps 1 through 2 are repeated for various values of
k ¼ 200; . . . ;1000, producing a set of ai values for each k.

(4) Once the ai values are obtained for each k, the following
power functions are fit by a subsequent regression to each
set of ai values,
Fig. 4. Comparison of pile settlement, d, obtained by FE model and Randolph’s
analytical solution [7] for k ¼ 700.
a0 ¼ 2069:4633ðkþ 350Þ�1:6054

a1 ¼ 0:07þ ð0:2934k0:3108Þ
a2 ¼ 0:6903þ ð8:2464k�0:5268Þ ð8Þ

(5) Substituting Eq. (8) into Eq. (6) results in a relationship for
computing pile settlement as a function of the pile slender-
ness ratio, H=d, and the pile stiffness ratio, k ¼ Ep=Es.

Fig. 2 shows the plot of Ip for k ¼ 200, and 1000 along with their
corresponding regressions. The agreement is excellent. Fig. 3 dem-
onstrates the plot of pile settlements, d, for k ¼ 200;300;500, and
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Fig. 2. Calibration of Ip using FE model for k = 200, and 1000.
1000, along with their very good matches produced by substituting
Eq. (8) into Eq. (6).

In order to make a direct comparison between the FE model and
Randolph’s analytical solution [7], Eq. (2) is substituted into Eq. (1),
which is then used to compute pile settlement for the problem de-
scribed previously in this Section. As mentioned earlier, Randolph’s
solution is developed for cylindrical piles only, but it can be ex-
tended to non-cylindrical piles (e.g. square or H piles) by choosing
a reasonable value of d. The pile considered in the FE model is of
square cross-section with dimension 0.3, thus d ¼ 0:3ð4=pÞ is used
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Fig. 5. Influence of side distance on pile settlement, using FE model for k ¼ 700.
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(adjusted by the ratio of square to circle perimeters) in Eqs. (1) and
(2) resulting in d values illustrated in Fig. 4 along with the FE re-
sults. As shown in Fig. 4, the agreement between the two methods
is considered good for H=d > 10, however, an error of up to about
10% is evident for H=d < 10. This level of accuracy is considered
reasonable since Randolph’s solution shows errors of 20–30% com-
pared to numerical analyses for H=d values of about 2 [8]. A study
was performed to assess the influence of side distance on pile set-
tlement. Fig. 5 gives a plot of pile settlement versus lx where lx is
pile location measured from the left edge of the soil mass (x ¼ 0).
The results indicate a steep reduction in settlement in the range
1 < lx < 10 elements (corresponding to relative error >10%) and
reasonably constant settlement values for 11 < lx < 25 (corre-
sponding to relative error <10%), where lx ¼ 25 denotes the center
along the x-direction. For this study, thus, the pile is fixed at the
center of the mesh to minimize the edge effects on pile settlement.
3. Conclusions

In this work, an elastic prediction of pile settlement was inves-
tigated employing a linear finite element program to derive the
settlement prediction of a vertically loaded single floating pile
founded in a homogeneous soil. A regression model is developed
and a simple mathematical expression is found for pile settlement,
d, that fits the FE results well, and shows reasonably good agree-
ment with the analytical solution derived by Randolph and Wroth
[7]. The advantage of the simplified expression developed in this
study is that it is easily inverted and solved for pile length, H, given
d, which can be used in the design of piles for serviceability limit
states.
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