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Serviceability limit state design of deep foundations

F. NAGHIBI�, G. A. FENTON�† and D. V. GRIFFITHS‡§

Although the settlement of deep foundations (piles) is not generally a concern if the piles are driven
to refusal, settlement can become a design issue if no stiff substratum is encountered. This paper
investigates the reliability-based design factors required for the serviceability limit state design of
deep foundations. The goals of the paper are first to develop a probabilistic deep foundation model,
which includes the effects of spatial variability and which is validated by simulation, and second to
recommend the geotechnical resistance factors required to achieve specified target reliability indices
against excessive settlement of deep foundations.

KEYWORDS: design; elasticity; failure; finite-element modelling; footings/foundations; limit state design/
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INTRODUCTION
Deep foundations, or piles, are structural members made of
steel, concrete and/or timber, which transmit some or all of
the applied load to the ground below the surface. Piles can
sometimes be costly, yet may be necessary to ensure struc-
tural safety in situations where the upper soil layer is highly
compressible and/or too weak to support the applied load.
The ground usually increases in strength with depth and
piles are used to transfer the load to underlying bedrock or a
stronger soil layer. Piles resting on a stiffer stratum are
called end-bearing. If not end-bearing, they are often called
floating piles, where most of the resistance is derived from
skin friction and/or cohesion. To simplify the random soil
model, only floating piles are considered in this paper.

To design a pile against entering the serviceability limit
state – that is, against entering a failure state where the pile’s
actual settlement exceeds a maximum tolerable settlement –
a settlement prediction model is required. If the model is
good, then it will provide a good estimate of the mean pile
settlement and the in-situ actual pile settlement will be due
to natural ‘residual’ soil variability around the predicted
mean. The settlement prediction model is used to determine
the pile design such that the predicted mean settlement is
some fixed fraction (specified by the load and resistance
factors) of the maximum tolerable settlement. If the settle-
ment prediction model is poor, then it also contributes to the
variability in the prediction of the actual settlement. This
source of variability will be referred to here collectively as
the ‘degree of site and prediction model understanding’,
which includes (a) the degree of understanding of the ground
properties and geotechnical properties throughout the site,
and (b) the accuracy and degree of confidence about the
numerical performance prediction model used to estimate the
serviceability geotechnical resistances.

It is assumed in this paper that a sufficiently accurate
settlement prediction model is used for the pile design, so
that model error itself is attributable only to errors in the
soil parameters used in the model – that is, to the degree of
site understanding. This is probably a reasonable assumption,
since if the (possibly non-linear) properties of the soil
through which the pile passes, along with the nature of the
interface between the pile and the soil, are all well known,
then models exist which can provide very good estimates of
the mean pile settlement.

This paper is not attempting to provide an improved
settlement prediction model. In fact a decision about the
degree of site and prediction model understanding used in
the pile design process is left to the designer. This paper
concentrates on the residual settlement variability (around
the mean) after the design has been performed. It is assumed
that this variability arises from the spatial variability of the
soil itself, along with uncertainty in the soil property esti-
mates used in the prediction model.

The main goal of this paper is to investigate the probabil-
istic behaviour of the settlement of a pile subjected to a
random vertical load and supported by a spatially random
soil, and to use this understanding to allow the determination
of the resistance factors required in the design process. It is
assumed here that the term ‘resistance’ refers to the force
which must be applied to the pile in order to displace it into
the soil by the maximum tolerable settlement for service-
ability. This is the maximum resistance that the pile can
provide at the serviceability limit state. The load and
resistance factor design (LRFD) approach is then applied for
the serviceability limit state (SLS) by specifying that the
factored pile resistance be at least equal to the factored
applied loads or actions. As discussed above, the settlement
prediction model itself only changes the pile design, not its
probability of failure, thus any reasonable settlement predic-
tion model can be employed so long as it gives reasonable
response results in the vicinity of the mean settlement point
and reflects uncertainties in its input parameters in a reason-
able fashion (e.g. if the soil parameters are incorrectly
estimated to be weaker than they actually are, a longer pile
than necessary will be designed). The choice in the mean
settlement prediction model, so long as it gives an accurate
estimate of the mean settlement given perfect information
about a particular site, will have no effect on the required
resistance factors. Since the stress–strain curves typical of
pile settlement are usually relatively smoothly varying, a
linearisation in the vicinity of the mean will be employed in
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this paper. That is, the soil will be assumed to be linearly
elastic around the mean settlement point, and a linear elastic
model will also be used as the settlement prediction model.

A reliability-based design approach, specifically the LRFD
approach, is implemented within the random finite-element
method (RFEM) to perform this investigation. LRFD is part
of the limit states design (LSD) approach, which basically
involves identifying possible failure modes (limit states) and
ensuring that the factored resistance to that failure mode
exceeds the factored load effects which are trying to cause
the failure. At the SLS corresponding to excessive settle-
ment, the LRFD design requirement can be expressed as

�gsR̂Rs >
X

i

ÆiF̂Fi (1)

where F̂Fi is the ith characteristic load effect, Æi is its
corresponding load factor, R̂Rs is the characteristic (design)
serviceability geotechnical resistance determined using char-
acteristic geotechnical parameters, and �gs is the serviceabil-
ity geotechnical resistance factor. The characteristic
serviceability geotechnical resistance, R̂Rs, is a function of the
soil’s characteristic elastic modulus, the maximum allowable
pile settlement and the pile geometry. The serviceability
geotechnical resistance factor, �gs, is typically less than 1.0
and accounts for uncertainties in geotechnical parameters
(Allen, 2005). The load factors, Æi, are typically greater than
1.0 for ultimate limit states but usually assumed equal to
1.0 for SLSs, to account for uncertainty in loads. In this
paper, the load factors are taken as 1.0, as is usual for SLS,
and the design load is calculated as the sum of the unfac-
tored dead and live loads. The LRFD requirement thus
becomes

�gsR̂Rs > F̂FL þ F̂FD (2)

where F̂FL and F̂FD are characteristic live and dead loads,
respectively.

Characteristic load values can be defined as

F̂FL ¼
�L

kL

F̂FD ¼
�D

kD

(3)

where �L and �D are the means of the live and dead loads,
and kL and kD are live and dead load bias factors, respec-
tively (Fenton et al., 2012). In general, the bias factors
capture the difference between the characteristic design
values and their means, and are usually defined as the ratio
of the mean to characteristic value. The values of kL and kD

are suggested by Bartlett et al. (2003) and Ellingwood et al.
(1980) to be kL ¼ 0.9 and kD ¼ 1.05. Assuming these to be
correct, the characteristic loads are thus calculated to be
F̂FL ¼ �L=0.9 and F̂FD ¼ �D=1.05:

In order to determine the resistance factor required in
equation (1) to achieve a target reliability, the target relia-
bility must be established. The Eurocode design basis, BS
EN 1990:2002 (BSI, 2002), suggests a one-year target
reliability index of 2.9 for SLS which corresponds to an
annual failure probability 2 3 10�3: Phoon et al. (1995)
suggest an annual target reliability index of 2.6 with corre-
sponding failure probability 5 3 10�3 for foundations at
SLS, whereas Zhang & Xu (2005) recommend a reliability
index of 2.46 with annual failure probability 7 3 10�3:

It probably makes more sense to consider lifetime failure
probabilities, rather than annual, since the design lifetime is,
or at least should be, targeted for all aspects of optimisation
of the overall system (e.g. to consider the time value of
periodic maintenance required by the design over the design

lifetime, incorporating climate change effects into load and
resistance models, including the effect of degradation of
resistance with time, and so on). The difference between
annual and lifetime target failure probabilities can be quite
substantial. For example, if it is assumed that annual ex-
tremes in loads and resistances from year to year are
independent, then an annual target reliability index of 2.9
(pm ’ 2 3 10�3) corresponds to a 50-year lifetime target
reliability index of 1.35 (pm ’ 10�1). The exact relationship
between annual and lifetime failure probabilities, under the
assumption of independence between annual load and resis-
tance extremes, is given by pm ¼ 1� (1� pann)n, where pann

is the annual target maximum acceptable failure probability
and n is the design lifetime in years.

The actual target lifetime failure probability will likely be
somewhere between the value of pm suggested above and the
target annual failure probability because annual extremes in
load and resistances are not likely to be truly independent.
In addition, if a lifetime maximum failure probability is
targeted, then the load and resistance distributions must also
be targeted for that lifetime (and the same statement must
be made about annual maximum failure probability).

The basic question is what lifetime failure probability is
society willing to accept? Is society willing to accept that
more than 1 in 10 (pm ’ 10�1) piles will experience exces-
sive settlement over the design life of a geotechnical system
on average? Probably not, given the huge expense of repair-
ing a foundation. Alternatively, is society willing to spend
the money required to ensure that less than 1 in 10 000
(pm ’ 10�4) piles will experience excessive settlement?
Probably not, especially considering the fact that piles are
usually redundant systems. Excessive settlement of one pile
is often mitigated by adjacent piles.

Thus, typical maximum lifetime failure probability of
excessive settlement of a single pile lying somewhere be-
tween pm ’ 10�1 and pm ’ 10�4 is deemed to be reason-
able, and this range has been considered in this paper. The
resistance factors required to achieve these target probabil-
ities will be recommended in the later section ‘Required
geotechnical resistance factors’.

To estimate the probability of excessive pile settlement, a
linear elastic model is employed, as discussed above, which
assumes that the soil surrounding the pile is perfectly
bonded to the pile shaft through friction and/or adhesion.
Any displacement of the pile is thus associated with an
equivalent displacement of the adjacent soil. This displace-
ment is assumed to be resisted by a force which is propor-
tional to the soil’s (residual) elastic modulus and the
magnitude of the displacement. As stated by Vesic (1977),
the fraction of pile settlement due to deformation of the soil
is a constant (dependent on Poisson ratio and pile geometry)
times F=Eeff , where F is the applied load and Eeff is the
effective soil elastic modulus. The effective soil elastic
modulus, Eeff , is defined here as the uniform (spatially
constant) value of the elastic modulus which would produce
a settlement identical to the actual pile settlement in a
spatially variable soil (Fenton & Griffiths, 2007).

The pile is assumed to be placed in a three-dimensional
spatially random soil. A random load is applied vertically to
the pile and the settlement of the pile is calculated using a
linear elastic finite-element model (Smith & Griffiths, 2004;
Fenton & Griffiths, 2005). The pile itself is assumed to be
square, for reasons to be discussed later, with fixed cross-
sectional dimension d 3 d: The pile length, H , is determined
as follows.

(a) The random soil is sampled at some location over a depth
D (for example, as would occur if a cone penetration test
(CPT) sounding were taken) to obtain a series of
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observations of the soil’s residual elastic modulus (in the
vicinity of the mean soil strain).

(b) The characteristic elastic modulus used in design, ÊE, is
determined from the soil sample.

(c) The required pile length, H , is obtained by way of the
LRFD requirement of equation (2).

The details are discussed in the following sections. Once the
pile length has been determined, the ‘failure’ probability that
the pile settlement exceeds the maximum tolerable settle-
ment can be determined from the theory developed in this
paper (as validated by simulation). Plots of failure probabil-
ity can then be developed as a function of the statistics of
the soil’s residual random elastic modulus field (mean, vari-
ance and correlation length) and the resistance factor used in
the design process. These plots can then be used to select
the required resistance factor for given pm:

The remainder of this paper is organised as follows: the
random soil and load models are described in the following
two sections. The subsequent fourth section develops a
theoretical approach to estimating the probability of exces-
sive pile settlement, which is then validated by simulation in
the next section entitled ‘Validation of theory by Monte
Carlo simulation’. In the section entitled ‘Required geotech-
nical resistance factors’, the resistance factors required to
achieve a target reliability index against excessive settlement
of deep foundations are recommended. Conclusions and sug-
gested future work are presented in the final section.

THE RANDOM SOIL MODEL
The spatially varying elastic modulus field may be char-

acterised by two numbers: one is the effective soil elastic
modulus, Eeff , a value which yields the same settlement in a
uniform elastic modulus field as the pile experiences in the
actual spatially varying soil (Fenton & Griffiths, 2007); the
second is the characteristic soil elastic modulus, ÊE, which is
an estimate of Eeff obtained from a soil sample. Both num-
bers are defined in the fourth section, entitled ‘Probability of
excessive pile settlement’, as geometric averages of the
actual spatially varying elastic modulus field, E, which is
assumed to be lognormally distributed with mean �E, stan-
dard deviation � E and spatial correlation length, Łln E: The
lognormal distribution is commonly used to represent non-
negative soil properties and means that ln E is normally
distributed with parameters �ln E and � ln E: The distribution
parameters of ln E can be obtained from the mean and
standard deviation of E using the following transformations

�ln E ¼ ln(�E)� 1

2
� 2

ln E

� 2
ln E ¼ ln(1þ v2

E)

(4)

where vE ¼ � E=�E is the coefficient of variation of the
elastic modulus field.

The correlation coefficient between the log-elastic modu-
lus at two points is defined by a spatial correlation function,
rln E(�), in which � is the distance between the two points.
In this study, a simple isotropic, exponentially decaying
(Markovian), correlation function will be employed, having
the form

rln E(�) ¼ exp
�2 �j j
Łln E

� �
(5)

The assumption of isotropy (correlation length the same
in all directions) is conservative, if the actual vertical
correlation length is less than the horizontal correlation
length (which is typical), since a larger vertical correlation

length leads to less variance reduction when averaging over
the pile length. The correlation function selected above acts
between values of ln E: This is because ln E is normally
distributed, and a normally distributed random field is
simply defined by its mean and covariance structure. The
spatial correlation length, Łln E, appearing in equation (5) is
loosely defined as the separation distance within which two
values of ln E are significantly correlated. Mathematically,
Łln E is defined as the area under the correlation function,
rln E(�) (Vanmarcke, 1984). In practice the correlation
length Łln E can be estimated by evaluating spatial statistics
of the log-elastic modulus data directly (see for example,
Fenton (1999)). The spatial correlation function, rln E(�),
has a corresponding variance reduction function, ª(V ),
which specifies how the variance is reduced upon local
averaging of ln E over some volume V : It will be assumed
in this work that averaging of the soil around a pile will
take place within a box of dimension V p ¼ Bp 3 Bp 3 C,
so that ª(V p) is defined by

ª(V p) ¼ 1

V 2
p

ðV p

0

ðV p

0

rln E(
~
x1 �

~
x2)d

~
x1d

~
x2 (6)

where
~
x1 and

~
x2 are spatial positions (x, y, z) within V p: The

pile is centred in the volume V p in plan, although the depth
C will extend below the pile, as will be shown later. Note
that ª(V p) is essentially just the average correlation coeffi-
cient between all points within the volume V p:

Realisations of the random elastic modulus field are
produced using the local average subdivision (LAS) method
(Fenton & Vanmarcke, 1990). Specifically, LAS produces a
discrete grid of local averages, G(

~
xi), of a standard Gaussian

random field, having some correlation structure, in this case
as given by equation (5), where

~
xi is the spatial location of

the centroid of the ith element. These local averages are
mapped to finite-element elastic modulus properties accord-
ing to

E(
~
xi) ¼ exp �ln E þ � ln EG(

~
xi)

n o
(7)

This research considers an individual pile placed in a
spatially varying random soil. In general, the soil will vary
in three dimensions, hence this study considers a three-
dimensional random field in which the pile is placed verti-
cally at a certain position, and soil samples, as in CPT or
standard penetration test (SPT) soundings, are taken verti-
cally at some possibly other position, as illustrated in Fig. 1.

Ground level

H

r

Pile

Soil sample

FT (kN)

Fig. 1. Relative locations of pile and soil samples
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The samples are used to produce the pile design – in
general, the further the samples are from the pile location
the lower the degree of site understanding.

THE RANDOM LOAD MODEL
In this paper only live and dead loads are considered,

which is a typical assumption in code development. The
load employed in reliability-based design against pile settle-
ment has two important values. One is the characteristic
total load used in the pile design, which comes from current
code provisions and is assumed to be deterministic:
F̂F ¼ F̂FL þ F̂FD ¼ �L=0.9þ �D=1.05 as in equation (3). The
other is the ‘true’, but random, total load applied to the pile,
F. The total load is equal to the sum of the maximum
lifetime live load, FL, and the relatively static dead load,
FD, that is

F ¼ FL þ FD (8)

where FL and FD are assumed here to be lognormally
distributed. The mean and variance of total load, F, assuming
live and dead loads are independent, are given by

�F ¼ �L þ �D

� 2
F ¼ � 2

L þ � 2
D

(9)

Although the sum of two lognormally distributed random
variables is not lognormally distributed, Fenton et al. (2008)
found that F is nevertheless approximately lognormally dis-
tributed. Assuming this to be true, the distribution param-
eters of the total load, F, are

�ln F ¼ ln(�F)� 1

2
� 2

ln F

� 2
ln F ¼ ln(1þ v2

F)

(10)

where vF ¼ � F=�F is the coefficient of variation of the total
load.

In the illustrative example presented later in this paper,
the characteristic load is calculated assuming that the ratio
of mean dead to mean live load is RD=L ¼ �D=�L ¼ 3.0:
This choice results in a characteristic total design load, F̂F,
which is approximately equal to the actual mean total load,
�F

F̂F ¼ F̂FL þ F̂FD ¼
�L

kL

þ �D

kD

¼ �F

4kL

þ 3�F

4kD

¼ �F

4(0.9)
þ 3�F

4(1.05)
¼ 0.99�F ’ �F

(11)

PROBABILITY OF EXCESSIVE PILE SETTLEMENT
In this section, a reliability-based design methodology is

presented to determine the required pile length and a subse-
quent theory is proposed to estimate the excessive settlement
failure probability of an individual pile placed in a spatially
varying soil. The theory is validated by simulation in the
following section. If a mean settlement model is used which
differs from the elastic model used here, as discussed in the
‘Introduction’, then only the design changes. As long as the
‘residual’ random behaviour of the in-situ pile remains
approximately linearly elastic around the mean, then the
results of this section will also apply to other prediction
models.

To assess the probabilistic behaviour of pile settlement,
the first task is to determine the nature of the settlement
distribution. To accomplish this, a series of simulations, each
with 2000 realisations, were performed using RFEM to

estimate the pile settlement distribution. Fig. 2 shows one of
the best (Fig. 2(a)) and one of the worst (Fig. 2(b)) fits of
the lognormal distribution to the pile settlement histogram,
having chi-square goodness-of-fit p-values of 0.2371 and
0.0037, respectively. The null hypothesis for this goodness-
of-fit test is that the settlement displacement follows a
lognormal distribution. Fig. 2(b) rejects the null hypothesis
for any significance level exceeding 0.37%. The visual
inspection of the plots, however, suggests that the lognormal
distribution is a reasonable distribution type for pile settle-
ment even in the case of Fig. 2(b), as suggested also by
Fenton & Griffiths (2007).

The reliability-based design goal is to determine the
required pile length, H , and diameter, d, such that the
probability, pf , of exceeding a specified maximum tolerable
settlement, �max, is acceptably small – that is, to find H and
d such that

P[� . �max] ¼ pf < pm (12)

in which � is the actual (random) pile settlement, pf is the
probability of design failure, and pm is the maximum
acceptable probability of design failure. It is assumed here

f δ
( 

 )δ

δ:
(a)
10 m� �3

f δ
( 

 )δ

δ: 10 m
(b)

� �3

0·04 0·06 0·08 0·10

0
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100

Frequency density

μ σln lnδ δ� � �2·7954, 0·1051

10 15 20 25

0

100

200

300 Frequency density

μ σln lnδ δ� � �4·2032, 0·1012

Fig. 2. Estimated and fitted lognormal distributions of settlement
for: (a) H 1 m, and d 0.3 m (p-value 0.2371) and
(b) H 14 m, and d 0.3 m (p-value 0.0037)
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that the pile type, and thus its cross-section, has already
been decided on, so that its length is the only design param-
eter of concern. Design failure is assumed to occur if the
actual pile settlement, �, exceeds the maximum tolerable
settlement, �max:

Various methods are available to calculate the mean
settlement of a pile, as discussed above; the basis of design
used in this paper has the same form as suggested by Poulos
(Poulos & Davis, 1980) and Randolph (Randolph & Wroth,
1978)

�̂� ¼ F̂F

ÊEd
Ip (13)

where �̂� is the predicted pile settlement, F̂F is the character-
istic load (see equation (11)), d is the pile width, ÊE is the
estimated characteristic soil elastic modulus, and Ip is a
settlement influence factor, which depends on a number of
parameters such as Poisson ratio, ratio of pile length, H , to
pile width, d, and the pile to soil stiffness ratio, k ¼ Ep=ÊE,
Ep being the pile elastic modulus. A function of form

Ip ¼ a0 þ
1

(H=d þ a1)a2
(14)

has been found here which well fits the Ip values obtained
using three-dimensional finite-element analysis. The calibra-
tion of Ip is discussed in detail by Naghibi et al. (2014).

As discussed in the ‘Introduction’, the simple elastic
prediction of �̂� can be replaced by a more sophisticated non-
linear prediction. The predicted settlement, �̂�, given by
equation (13) can be used to calculate the characteristic
serviceability geotechnical resistance, R̂Rs, introduced in equa-
tion (2). Replacing the predicted settlement, �̂�, with the
maximum tolerable settlement, �max, and solving for corre-
sponding value of F̂F gives the characteristic serviceability
geotechnical resistance, R̂Rs, as

R̂Rs ¼
�maxÊEd

Ip

(15)

If ÊE is an estimate of the mean effective elastic modulus,
then R̂Rs is an estimate of the mean geotechnical resistance
corresponding to �max: Note that if an alternative settlement
prediction model is used to determine �̂�, then equation (13)
can be used to solve for the ‘equivalent’ value of ÊE to use
in equation (15).

Replacing R̂Rs in the LRFD design requirement of equation
(2) and using F̂F ¼ F̂FL þ F̂FD leads to

�gs

�maxÊEd

Ip

 !
> F̂F (16)

The design pile length can now be determined by taking
equation (16) at the equality, replacing Ip with equation
(14), and solving for H , given an initial estimate for d

H ¼ d
1

(�gs�maxÊEd=F̂F)� a0

" #1=a2

� a1

8<
:

9=
; (17)

Note that equation (17) could be solved for d (given H),
or for H=d, using a root-finding algorithm, such as 1-pt
iteration.

Turning attention now to the actual (random) pile settle-
ment, �, it is hypothesised that � can be determined using
equation (13) by replacing the characteristic load F̂F with the
true (random) load F and the characteristic elastic modulus
ÊE with the actual (random) effective elastic modulus Eeff

� ¼ F

Eeff d
Ip (18)

Investigations by Fenton & Griffiths (2002) suggest that
the effective elastic modulus as seen by a shallow foundation
is a geometric average of the soil’s elastic modulus under
the foundation. It will be similarly assumed here that the
effective elastic modulus, Eeff , as seen by a pile is a
geometric average of the soil’s elastic modulus over a
volume surrounding the pile

Eeff ¼ exp
1

V p

ð
V p

ln E(
~
x) d

~
x

8<
:

9=
;

¼ exp
1

B2
pC

ðBp

0

ðBp

0

ðC
0

ln E(x, y, z) dz dy dx

8><
>:

9>=
>;

(19)

where E(x, y, z) is the elastic modulus of the soil at spatial
position (x, y, z): As mentioned above, the pile is centred on
the volume V p ¼ Bp 3 Bp 3 C:

The characteristic elastic modulus, ÊE, is estimated using
observed values of the soil’s elastic modulus obtained by
sampling somewhere in the vicinity of the pile, which yields
a sequence of m observed elastic modulus values,
Eo

1, Eo
2, . . ., Eo

m: If ÊE is to be a good estimate of Eeff , then it
should be similarly determined as a geometric average of
the observed sample Eo

1, Eo
2, . . ., Eo

m

ÊE ¼
Ym
j¼1

Eo
j

 !1=m

¼ exp
1

m

Xm

j¼1

ln Eo
j

( )

’ exp
1

V s

ð
V s

ln E(
~
x)d

~
x

8<
:

9=
;

(20)

The probability that the design fails (see equation (12)) –
that is, that the actual pile settlement � exceeds the design
maximum tolerable settlement �max – can now be estimated.
Using equation (14) in equation (18), and replacing H with
equation (17), the actual (random) pile settlement can be
expressed as

� ¼
�max�gsÊE

Eeff

F

F̂F

� �
(21)

which means that the design requirement of equation (12)
now becomes to find �gs such that

P[� . �max] ¼ P
�gsÊE

Eeff

F

F̂F

� �
. 1

" #

¼ P F
ÊE

Eeff

 !
.

F̂F

�gs

" #
< pm

(22)

If the soil’s elastic modulus, E, is lognormally distributed,
as assumed, then both ÊE and Eeff will also be lognormally
distributed since geometric averages preserve the lognormal
distribution. In addition, if F is at least approximately
lognormally distributed, as assumed here (Fenton et al.,
2008), the quantity W

W ¼ F
ÊE

Eeff

(23)

which combines all of the random quantities in equation
(22), will be (at least approximately) lognormally distributed
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and its parameters can be determined by considering the
individual distributions of F, ÊE and Eeff as follows. Since W
is assumed lognormally distributed, then

ln W ¼ ln F þ ln ÊE � ln Eeff (24)

is normally distributed and pf can be found from

pf ¼ P[W . F̂F=�gs] ¼ P[ln W . ln(F̂F=�gs)]

¼ 1��
ln(F̂F=�gs)� �ln W

� ln W

" #

¼ 1��(�)

(25)

where � is the standard normal cumulative distribution
function, and the argument to �, �, is the desired reliability
index so that pf ¼ pm: The required resistance factor can
then be determined from equation (25) as

�gs ¼
F̂F

exp (�ln W þ �� ln W )
(26)

The mean and variance of ln W are

�ln W ¼ �ln F þ �ln ÊE � �ln Eeff
(27)

� 2
ln W ¼ � 2

ln F þ � 2
ln ÊE
þ � 2

ln Eeff
� 2Cov[ln ÊE, ln Eeff ] (28)

assuming that the total load and soil elastic modulus are
independent and where Cov[X,Y] denotes the covariance
between random variables X and Y. As discussed in the
previous section entitled ‘The random load model’, the total
load, F, is equal to the sum of the live load, FL, and the
dead load, FD – that is, F ¼ FL þ FD – so that the mean
and variance of ln F can be estimated using equations (8),
(9) and (10).

With reference to equation (20), the mean and variance of
ln ÊE are

�ln ÊE ¼ E[ln ÊE] ¼ E
1

m

Xm

j¼1

ln Eo
j

" #
¼ 1

m

Xm

j¼1

�ln E ¼ �ln E

(29)

where E[.] is the expectation operator, and

� 2
ln ÊE
¼ E[(ln ÊE � �ln ÊE)

2
]

¼ E
1

m

Xm

j¼1

ln Eo
j

 !
� �ln ÊE

" #2
8<
:

9=
;

’ � 2
ln E

m2

Xm

i¼1

Xm

j¼1

r(
~
xo

i �
~
xo

j )

(30)

in which
~
xo

i is the spatial location of the centre of the ith
soil sample, for i ¼ 1, . . ., m, and r is the correlation func-
tion defined by equation (5). An approximation in the vari-
ance occurs owing to the fact that correlation coefficients
between the local averages associated with observations are
approximated by correlation coefficients between the local
average centres. Assuming that ln ÊE represents a local aver-
age of ln E over the sample domain of volume V s ¼
Bs 3 Bs 3 D, as also suggested by equation (20), then � 2

ln ÊE
may be better estimated as

� 2
ln ÊE
’ � 2

ln Eª(V s) (31)

where ª(V s) is the variance reduction function that measures
the reduction in variance due to local averaging over the

sample domain V s (see equation (6) using V s rather than
V p).

Similarly, and with reference to equation (19), the mean
and variance of ln Eeff are

�ln Eeff
¼ E[ln Eeff ] ¼ E

1

V p

ðV p

0

ln E(
~
x) d

~
x

2
64

3
75

¼ 1

V p

ðV p

0

�ln E d
~
x¼ �ln E

(32)

� 2
ln Eeff

¼ E[(ln Eeff � �ln Eeff
)2]

’ � 2
ln E

V 2
p

ðV p

0

ðV p

0

r(
~
x1 �

~
x2) d

~
x1 d

~
x2

¼ � 2
ln Eª(V p)

(33)

The covariance appearing in equation (28) between the
geometric average of the observed elastic modulus values
over the sample volume, V s, and the effective elastic mod-
ulus as seen by the pile length over the volume V p is
obtained as follows, using the rightmost approximate in
equation (20)

Cov[ln ÊE, ln Eeff ]¼ E[(ln ÊE� �ln ÊE)(ln Eeff � �ln Eeff
)]

¼ E
1

V s

ð
V s

ln E(
~
x1)d

~
x1

0
@

1
A� �ln ÊE

2
4

3
5

8<
:

3
1

V p

ð
V p

lnE(
~
x2)d

~
x2

0
@

1
A� �ln Eeff

2
4

3
5
9=
;

’ � 2
ln E

V sV p

ð
V s

ð
V p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ (

~
x1�

~
x2)2

r !
d
~
x1 d

~
x2

’ � 2
ln EªV sV p

(34)

where ªV sV p
is the average correlation coefficient between

the log-elastic modulus samples over the sample volume, V s,
and the log-elastic modulus over the pile volume, V p, and r
is the correlation function between ln E(

~
x1) and ln E(

~
x2) (see

equation (5)). In detail, ªV sV p
is defined by

ªV sV p
¼ 1

V sV p

ð
V s

ð
V p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ (

~
x1 �

~
x2)2

r !
d
~
x1 d

~
x2

¼ 1

V sV p

ðBs

0

ðBs

0

ðD
0

ðBp

0

ðBp

0

ðC
0

3 r(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rx þ xs � xp)2 þ (ry þ ys � yp)2 þ (zs � zp)2

q
)

3 dzpdypdxpdzsdysdxs

(35)

where r is the horizontal distance between the pile centreline
and the centreline of the soil sample column shown in Fig.
1, rx ¼ r þ (Bp � Bs)=2, and ry ¼ (Bp � Bs)=2:
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Substituting equations (10), (29), (31), (32), (33) and (34)
into equations (27) and (28), leads to

�ln W ¼ �ln F (36)

� 2
ln W ’ � 2

ln F þ � 2
ln E[ª(V s)þ ª(V p)� 2ªV sV p

] (37)

If the reliability index is specified, perhaps by
� ¼ ���1( pm), then the geotechnical resistance factor may
now be determined by equation (26).

The theoretical solution developed above is valid under
the assumption that a single pile is sufficient to support the
applied design load without excessive settlement (according
to design). In other words, the above solution only applies if
a pile can be increased in length sufficiently that its settle-
ment becomes less than �max with probability pm: However,
some load–elastic modulus combinations are such that even
an infinite length pile (of diameter d and elastic modulus
Ep) will have a predicted settlement exceeding �max: This
will occur if the maximum value of Ip, which will be called
Ip,max, required to just satisfy equation (16), where

Ip,max ¼
�gs�maxÊEd

F̂F
(38)

is less than the minimum value available from equation (14),
which occurs when H !1

b1 ¼ a0 þ
1

(1=d þ a1)a2
¼ a0 (39)

At the other extreme, if Ip,max is greater than that given
by equation (14) when H ! 0

b0 ¼ a0 þ a�a2

1 (40)

then no pile is required to provide adequate settlement
resistance.

What this means is that if b1, Ip,max, b0, then the failure
probability given by equation (25) is valid. If Ip,max. b0,
then no pile is required by design, and the probability of
excessive settlement is obtained from equation (25) using
H ¼ 0:

If Ip,max, b1, then a single pile is insufficient to carry the
load, within an acceptable settlement, and multiple piles
must be provided. If the design load, F̂F, is assumed to be
shared equally between the provided piles, and the piles are
assumed to act independently, then the load applied to each
pile is thus F̂F=np, where np is the number of piles required
to reduce the settlement to less than �max: Owing to the
assumption of independence, the probability of excessive
settlement for each pile becomes

pf ¼ 1��
ln [F̂F=(np�gs)]� �ln W

� ln W

( )
(41)

Dividing the design load by the number of piles preserves
the variance of ln F (see equation (10)), therefore equation
(37) can still be used to obtain the variance of ln W : The
mean of ln F, hence the mean of ln W , is reduced as follows

�ln W ¼ �ln F ¼ ln(�F=np)� 1

2
� 2

ln F (42)

It can be shown that the number of piles, np, required by
design to support the load F̂F is

np ¼ int 1þ b1

Ip,max

� �
(43)

However, since the ground is random, the value of ÊE is
random, so that Ip,max and thus np are also random.

The failure probability is thus computed using the total
probability theorem as

pf ¼
X1
i¼0

P[Fjnp ¼ i]P[np ¼ i] (44)

where P[Fjnp ¼ i] is obtained by equation (41). To find
P[np ¼ i], it is convenient to define

f 0 ¼
ln(b0F̂F=�max�gsd)� �ln ÊE

� ln ÊE

f i ¼
ln(b1F̂F=i�max�gsd)� �ln ÊE

� ln ÊE

, for i ¼ 1, 2, 3, . . .

(45)

then

P[np ¼ 0] ¼ P[Ip,max > b0] ¼ 1��( f 0)

P[np ¼ 1] ¼ P[b1 < Ip,max , b0] ¼ �( f 0)��( f 1)

P[np ¼ i] ¼ P[b1=i < Ip,max , bi=(i� 1)]

¼ �( f i�1)��( f i), for i ¼ 2, 3, . . .

(46)

The mean and variance of ln ÊE are defined in equations
(29) and (31).

Unlike equation (25), equation (44) is not easily inverted
to solve for the required resistance factor, �gs; that is,
finding �gs such that equation (12) is satisfied. To obtain the
required �gs, root-finding algorithms, such as bisection, can
be utilised to determine the root of

pf � pm ¼ 0 (47)

The calibration of Ip is done here by performing the
finite-element predictions of pile settlement over a range of
H=d values and solving for Ip using equation (13). For
k ¼ Ep=ÊE ¼ 700 and � ¼ 0.3, the solid curve shown in Fig.
3 results. The following function was fit (by regression) to
the solid curve in Fig. 3

Ip ¼ 0.029þ 1

(H=d þ 2.44)0.939
(48)

which is also shown on Fig. 3, but is indistinguishable from
the finite-element results. The predicted Ip value given by
equation (48) is used in the next section, but a more general
regression fit is developed by Naghibi et al. (2014).

Ip

H d/
0 10 20 30

0

0·1

0·2

0·3
FEM

Fitted 0·029 ( / 2·44)I H dp
0·939� � � �

Fig. 3. Calibration of Ip using FE model for k 700 and � 0.3
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VALIDATION OF THEORY BY MONTE CARLO
SIMULATION

The objective of this section is to validate the theory
developed in the previous section by comparing to the
random finite-element method (RFEM, Fenton & Griffiths,
2008). Only one specific pile diameter is considered in the
simulation, d ¼ 0.3 m, although several side studies were
conducted to ensure that the agreement remains the same for
differing pile diameters. The parameters used in the simula-
tion are detailed in Table 1.

The simulation essentially proceeds by carrying out a
series of hypothetical designs on simulated soil fields and
checking to see what fraction of the designs fail (excessive
settlement). In practice, the accuracy of the Monte Carlo
method depends on how well the assumed probability dis-
tribution fits the real stochastic process. If the fit is reason-
able, the accuracy increases with the number of simulation
runs; in other words, improved results will be obtained as
the number of simulation realisations increases. In detail, the
steps involved in the Monte Carlo simulation are listed
below.

(a) The elastic modulus, E, of a soil mass is simulated as a
three-dimensionally spatially variable random field using
the local average subdivision (LAS) method (Fenton &
Vanmarcke, 1990). The numbers of soil cells are 54 by 30
in the X, Y (plan) and 30 in the Z (vertical) directions and
each cell size is taken to be 0.3 m by 0.3 m by 0.5 m in
the X-, Y- and Z-directions.

(b) The simulated soil is sampled along a vertical line
through the soil at some distance, r, from the pile, see
Fig. 1. The virtually sampled soil properties are used to
estimate the characteristic elastic modulus, ln ÊE, accord-
ing to equation (20). A sample of depth D ¼ 10 m was
selected arbitrarily and, since the random field element
sizes are 0.3 by 0.3 m in plan, the sampling volume is
V s ¼ Bs 3 Bs 3 D ¼ 0.3 3 0.3 3 10 m3. Three sampling
distances are considered: the first is at r ¼ 0 m, which
means that the samples are taken at the pile location. In
this case, uncertainty about the pile resistance only arises
if the pile extends below the sampling depth or if the
elastic modulus field near the piles differs significantly
from the sample at the pile. Typically, probabilities of
failure when r ¼ 0 m are very small. The other two
sample distances considered are r ¼ 5 m and r ¼ 10 m,
corresponding to reducing understanding of the soil
conditions at the pile location. Note that it is really the
ratio, r=Łln E, which affects the failure probability and a

wide range in the correlation length, Łln E, has been
considered.

(c) Once the characteristic elastic modulus has been estab-
lished, the required design pile length, H , is calculated
using equation (17) for a specified value of �gs (note,
k ¼ Ep=ÊE ¼ 700 and equation (48) were used in this
step).

(d ) Dead and live loads, FD and FL, are simulated as
independent lognormally distributed random variables
and then added to produce the actual total load on the
pile, F ¼ FL þ FD:

(e) The ‘true’ pile settlement, �, is computed using the finite-
element method, the details of which can be found in
Naghibi et al. (2014). If � . �max then the pile is
assumed to have failed.

( f ) The entire process from step (a) to step (e) is repeated
nsim times (where nsim ¼ 2000 in the present study). If nf

of these repetitions result in a pile failure, then an
estimate of the probability of failure is pf ¼ nf=nsim:

(g) Repeating steps (a) through ( f ) using various values of
�gs in the design step allows plots of failure probability
against geotechnical resistance factor to be produced for
the various sampling distances, coefficients of variation
of the elastic modulus and correlation lengths.

It is recognised that pile settlement becomes non-linear
after about 2% of the pile diameter, and so the elastic
modulus mean used in this simulation must be considered to
be a secant modulus which approximates the curved nature
of the actual pile load–settlement curve. However, as dis-
cussed earlier, the details of the mean settlement predictor
used to design the pile are not important, and of course, the
reader is encouraged to use the best settlement prediction
available to them. The linear model used in this paper is,
however, the best currently available to predict the effects of
spatial variability of the soil on the required resistance
factor.

The failure probabilities estimated by theory, by way of
equation (44), can be superimposed on the simulation-based
failure probability plots, allowing a direct comparison of the
methods. Fig. 4 illustrates the agreement between theory and
simulation for vE ¼ 0.3, and various resistance factors, �gs,
when the soil is sampled at r ¼ 0 m, r ¼ 5 m and r ¼ 10 m
from the pile location. The simulation involved only
nsim ¼ 2000 realisations and so cannot accurately resolve
probabilities less than about 1 3 10�3 – the standard devia-
tion of the failure probability estimate is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pf (1� pf )=nsim

p
’ 0.02

ffiffiffiffiffi
pf

p
for small failure probability pf : This means that

if pf ¼ 1 3 10�3, then the standard deviation of its estimate
is practically the same at 0.7 3 10�3:

The very good agreement between simulation and theory
seen in Fig. 4 was obtained by adjusting by trial and error
the soil volume surrounding the pile, V p ¼ Bp 3 Bp 3 C, for
use in the geometric average of equation (6). The (approxi-
mately) best averaging volume was found to occur when
Bp ¼ 2 m and C ¼ 2H , as suggested in Table 2. The remain-
ing small discrepancies are believed to arise owing at least
to the following reasons.

(a) The theory assumes that the total load is lognormally
distributed, for simplicity, while the simulation assumes
that the dead and live load components are perhaps more
realistically individually lognormally distributed and that
the total load is the sum of the two components.

(b) The simulation assumes that the soil mass is underlain by
firm bedrock at a depth of 15 m, while the theory
assumes that the pile is founded in an elastic half-space.
The main implications of this are that the piles in the
simulation cannot exceed a length of 15 m, and in fact

Table 1. Parameters used in validation of theory

Parameters Values considered

�L 400 kN
vL ¼ � L=�L 0.27
�D 1200 kN
vD ¼ �D=�D 0.1
Poisson ratio, � 0.3
�E 30 MPa
vE 0.1, 0.2, 0.3, 0.4, 0.5
Łln E 0–30 m
�gs 0.6, 0.7, 0.8, 0.9
Ep 21 GPa
d 0.3 m
�max 0.025 m
Bs 0.3 m
Bp 2.0 m
D 10 m
C 2H
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boundary effects begin to show themselves well before
this length. The solution was to limit the piles in the
simulation to a maximum length of Hmax ¼ 14 m. If the
design required a pile in excess of Hmax, then multiple
piles were provided. See the previous section for a
discussion of multiple piles being used. In order to
compare with the simulation, the theory was adjusted
temporarily by replacing equation (39) with

b1 ¼ a0 þ
1

(Hmax=d þ a1)a2
(49)

In light of these uncertainties, the agreement between
theory and simulation is deemed to be excellent so that the
theory was felt to be accurate enough for the determination
of resistance factors required for the design process, as
discussed in the next section.

It is evident from Fig. 4 that the probability of failure

reaches a maximum at an intermediate correlation length of
around Łln E ’ 3 to 10 m for all three sampling schemes
considered (r ¼ 0, 5 and 10 m). This is as expected, since
for small and large correlation lengths the values of ÊE and
Eeff become equal for stationary random fields and so the
largest difference between ÊE and Eeff will occur at inter-
mediate correlation lengths. It is also observed from Fig. 4
that the probability of failure, pf , increases with resistance
factor, �gs, as expected. Also, pf is smaller when the soil is
sampled directly at the pile location, which is also to be
expected, and means that construction savings may be
achieved by improving the sampling scheme. The worst-case
(lowest) resistance factor happens when the correlation
length, Łln E, is approximately equal to the distance from the
pile to the sampling location, a number between 1 and 10 m
for the latter sampling schemes used in this study. This
worst case is important, since the correlation length is very
hard to estimate and will be unknown for most sites. In
other words, in the absence of knowledge about the correla-
tion length, the lowest resistance factor in these plots, at the
worst-case correlation length, can conservatively be used.
Notice in Fig. 4, that the worst-case correlation length shows
some increase as the distance to the sample location in-
creases.

Figure 5 shows the effect of the resistance factor on the
probability of failure, as estimated by equation (44) for
different values of vE, and the corresponding worst-case
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Fig. 4. Effect of correlation length, Łln E , on probability of failure,
pf , for vE 0.3, and (a) r 0 m; (b) r 5 m; (c) r 10 m;
generated by equation (44)

Table 2. Worst-case geotechnical resistance factors for various
coefficients of variation, vE, distance to sampling location, r, and
acceptable failure probabilities, pm

r: m vE Geotechnical resistance factor

pm ¼ 10�1 pm ¼ 10�2 pm ¼ 10�3 pm ¼ 10�4

0 0.1 0.88 0.79 0.73 0.69
0 0.2 0.86 0.77 0.72 0.68
0 0.3 0.84 0.76 0.70 0.66
0 0.4 0.83 0.74 0.68 0.63
0 0.5 0.81 0.73 0.66 0.61
5 0.1 0.86 0.76 0.69 0.64
5 0.2 0.79 0.66 0.58 0.53
5 0.3 0.73 0.58 0.49 0.43
5 0.4 0.68 0.51 0.41 0.35
5 0.5 0.63 0.45 0.34 0.28
10 0.1 0.85 0.75 0.69 0.64
10 0.2 0.76 0.62 0.54 0.48
10 0.3 0.69 0.52 0.44 0.38
10 0.4 0.62 0.45 0.36 0.31
10 0.5 0.57 0.39 0.31 0.26
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Fig. 5. Effect of resistance factor, �gs, on probability of failure, pf ,
for r 5 m, and Łln E 5 m, generated by equation (44)
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correlation Łln E ¼ 5 m, when the soil is sampled at r ¼ 5 m
from the pile location. This figure can be used for design by
drawing a horizontal line across at the target probability, pm,
and then reading off the required resistance factor for a
given vE: For example, if pm ¼ 0.05, it can be seen that �gs

is 0.58 for the ‘worst case’ vE ¼ 0.5. For the other vE values
considered, the required resistance factor is between 0.62
and 0.81. For lower target probabilities, say pm ¼ 0.01, the
resistance factor for the ‘worst case’ vE decreases to 0.48,
and ranges between 0.52 and 0.72 for all other considered
vE values. This means that construction savings may be
achieved with lower target probabilities when residual soil
variability is reduced by sufficient sampling.

REQUIRED GEOTECHNICAL RESISTANCE FACTORS
In this section, the values of resistance factor, �gs,

required to achieve maximum acceptable failure probability
levels 10�1, 10�2, 10�3 and 10�4 will be investigated. The
reliability indices, �, corresponding to these four target
probabilities are 1.28, 2.3, 3.1 and 3.7, respectively.

Figures 6, 7 and 8 demonstrate the resistance factors
required for the three sampling schemes used in this study
(r ¼ 0 m, r ¼ 5 m, and r ¼ 10 m), to achieve the four maxi-
mum acceptable failure probabilities. In the case where the
soil is sampled at the pile location, as depicted in Fig. 6, the
resistance factor exceeds 0.80 when pm > 10�1 and becomes
as low as 0.61 for pm > 10�4:

The smallest resistance factors in Fig. 8 correspond to the
smallest acceptable failure probability, pm ¼ 10�4, when the
soil is sampled at r ¼ 10 m away from the pile location.
When the elastic modulus coefficient of variation is large

(vE ¼ 0.5), the worst-case values of �gs become as low as
0.26 in order to achieve pm ¼ 10�4: This means that there
will be a significant construction cost penalty if a highly
reliable pile is to be designed using a site investigation
which is insufficient to reduce the residual variability to less
than vE ¼ 0.5: In the presence of sufficient site investigation,
the upper bound in each plot (corresponding to vE ¼ 0.1)
can probably be used, leading to a more economical design
in terms of construction cost.

Table 2 summarises the worst-case resistance factors
required to achieve the indicated maximum acceptable fail-
ure probabilities as seen in Figs 6, 7 and 8.

CONCLUSIONS
A theoretical model predicting the probability of exces-

sive settlement of a pile was developed to allow the
determination of resistance factors required to ensure that
the probability of actual pile settlement exceeding the
maximum tolerable settlement is acceptably small. The
model assumes that the pile has been designed using a
reasonable mean settlement prediction, which in this paper
was a linearly elastic prediction, but which can be general-
ised to more sophisticated predictors. The probability of
excessive settlement of the designed pile depends on the
residual behaviour of the soil around its mean, which has
been assumed to be predicted by a spatially varying linear
elasticity field.

The theoretical model was validated by the random finite-
element method and then used to estimate geotechnical
resistance factors required to achieve four maximum accep-
table failure probabilities (10�1, 10�2, 10�3 and 10�4). The
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Fig. 6. Geotechnical resistance factors for soil samples taken at the pile location (r 0 m): (a) pm 1021; (b) pm 1022; (c) pm 1023;
(d) pm 1024
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resulting resistance factors listed in Table 2 have at least two
significant advantages to their use in practice

(a) the resistance factor can be calibrated to account for the
level of site and model understanding, represented
approximately here by the sampling distance r

(b) the target reliability can be explicitly adjusted for
differing failure consequence and redundancy levels.
For example, replacement or repair of a foundation due to
excessive settlement is often extremely expensive, and
can be orders of magnitude higher than the original cost
of the foundation. In this case, a higher reliability (lower
pm) may be warranted. Alternatively, if the foundation is
part of a redundant system of multiple foundations (e.g. a
series of piles) so that the excessive settlement of one
foundation will not be noticed (the load is supported by
adjacent stronger foundations), then a lower reliability
(higher pm) may be appropriate to use for the design of
the individual foundation components.

The design approach adopted in this paper takes advan-
tage of the provision of reliability by way of a resistance
factor and proceeds as follows.

(a) Decide on a pile type, so that the pile elastic modulus,
Ep, and diameter (or width), d, are known (alternatively
d can also be obtained in the design process – see step
(e)).

(b) Decide on a maximum acceptable failure probability, pm,
for the pile. As discussed above, the choice of pm depends
on the severity of failure consequences and the level of
pile redundancy.

(c) Sample the soil. If a linear elastic design model is being

used, estimate the characteristic soil elastic modulus
using equation (20). In this paper, the estimate is a
geometric average which is generally slightly lower than
the arithmetic average (by 2–5% for most soils). For
simplicity, an estimate of the mean elastic modulus (i.e.
the arithmetic average) can also be used.

(d ) Select a geotechnical resistance factor for the maximum
acceptable failure probability, pm, and sampling distance
from Table 2. The sampling distance has been used here
as a proxy for level of site understanding. The actual
geotechnical resistance factor used in design may also
need to be reduced somewhat, depending on the
magnitude of the model and measurement errors, as
discussed below.

(e) Compute the required pile length and/or diameter, using
the selected geotechnical resistance factor, �gs, and the
maximum tolerable settlement, �max, by way of equation
(17), or some other more accurate design process.

Three sampling schemes have been considered in this
study. Better estimates of conditions at the pile are of
course obtained when samples are taken at the pile loca-
tion (r ¼ 0 m), which translates into lower probability of
failure or, equivalently, larger geotechnical resistance factor
values. The required geotechnical resistance factor also
depends on the soil field uncertainty level (e.g. coefficient
of variation, vE), and correlation level (e.g. correlation
length, Łln E). Since coefficient of variation, vE and corre-
lation length, Łln E, are usually unknown for a given site,
various vE values are considered in Table 2 using the
worst-case correlation length (highest failure probability).
Assuming a coefficient of variation of around vE ’ 0.3 is
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Fig. 7. Geotechnical resistance factors for soil samples taken at r 5 m from the pile centreline: (a) pm 1021; (b) pm 1022;
(c) pm 1023; (d) pm 1024
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probably reasonably conservative. Note that the use of the
worst-case correlation length can be quite conservative
(see Figs 6–8).

The resistance factors recommended in this study for
SLS design of deep foundations are upper bounds at the
worst-case correlation length, and therefore unconservative,
because measurement and model errors are not explicitly
considered in their determination. These additional error
sources can be accommodated here by using a value of vE

greater than would actually be true at a site (e.g. if
vE ¼ 0.2 at a site, the effects of measurement and model
error might be accommodated by using vE ¼ 0.3 in the
relationships presented here) or by assuming that the soil
samples were taken further away from the pile centreline
than they actually were; for example, if low-quality soil
samples are taken at the pile location (r ¼ 0 m) the geo-
technical resistance factor corresponding to a larger value
of r (say r ¼ 5 m) should be used. Note, however, that the
actual correlation length at the site is unlikely to be equal
to the worst-case correlation length used here, so that to
some extent the use of the conservative values in Table 2
may already be sufficient to account for measurement and
model errors.
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NOTATION
ai settlement prediction parameter

Bp width of soil volume used in geometric average around
pile

Bs width of soil sample volume used in sample geometric
average

bi interval boundary
C depth of soil volume used in geometric average around

pile
Cov[X,Y] covariance between random variables X and Y

D depth of soil sample
d pile diameter
E soil’s elastic modulus
ÊE estimate of effective elastic modulus, derived from soil

samples
Eeff effective uniform soil elastic modulus that, if

surrounding the pile, would yield the same settlement as
actually observed

Ep pile’s elastic modulus
Eo

j one of m elastic modulus soil samples actually observed
E(

~
xi) elastic modulus at the spatial location zi

E[:] expectation operator
F total true (random) load
F̂F unfactored design load ¼ F̂FL þ F̂FD

FD true (random) dead load
F̂FD characteristic dead load ¼ �D=kD

F̂Fi ith characteristic load effect
FL true (random) live load
F̂FL characteristic live load ¼ �L=kL

G(
~
xi) standard normal (Gaussian) random field
H designed pile length

Hmax maximum desired pile length
Ip settlement influence factor

Ip,max maximum value of Ip required to satisfy equation (15)
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Fig. 8. Geotechnical resistance factors for soil samples taken at r 10 m from the pile centreline: (a) pm 1021; (b) pm 1022;
(c) pm 1023; (d) pm 1024
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k pile to soil stiffness ratio ¼ Ep=ÊE
kD dead load bias factor
kL live load bias factor
m number of soil observations
n design lifetime (years)

nsim number of simulations
pann annual maximum acceptable failure probability

pf probability of failure (P[� . �max])
pm lifetime maximum acceptable failure probability
Rs true design geotechnical resistance (random)
R̂Rs serviceability characteristic resistance (based on

characteristic soil properties)
r distance between soil sample and pile centreline

rx plan x-direction distance between common corners of
geometric averaging volumes at sample and pile

ry plan y-direction distance between common corners of
geometric averaging volumes at sample and pile

V p volume of geometric average around pile
(¼ Bp 3 Bp 3 C)

V s volume of sample geometric average (¼ Bs 3 Bs 3 D)
vE elastic modulus coefficient of variation (� E=�E)
vF load coefficient of variation (� F=�F )
W true load times ratio of characteristic to equivalent elastic

modulus in soils under total stress conditions (FÊE=Eeff )

~
x spatial coordinate, (x, y, z) in three dimensions

~
xo

i spatial coordinate of the centre of the ith soil sample
Æ total load factor
Æi load factor corresponding to the ith load effect
� reliability index
ª variance reduction function (due to local averaging)

ª(V p) variance function giving variance reduction due to
averaging over soil volume surrounding pile

ª(V s) variance function giving variance reduction due to
averaging over sample volume

ªV sV p
average correlation coefficient between elastic modulus
samples over volume V s and elastic modulus values over
volume V p

� pile settlement, positive downwards
�̂� predicted pile settlement

�max maximum acceptable pile settlement
Łln E isotropic correlation length of random log-elastic

modulus field
�D mean dead load
�E mean elastic modulus
�F mean total load on pile
�L mean live load

�ln E mean of log-elastic modulus
�ln ÊE mean of logarithm of estimated effective elastic modulus

(based on geometric average of elastic modulus
observations)

�ln Eeff
mean of logarithm of effective elastic modulus (based on
geometric average of elastic modulus over pile length H)

�ln F mean total log-load on pile
�ln W mean of ln W

� Poisson ratio
rln E(�) common correlation function

�D dead load standard deviation
� E standard deviation of elastic modulus
�F total load standard deviation
� L live load standard deviation

� ln E standard deviation of log-elastic modulus
� ln ÊE standard deviation of logarithm of estimated effective

elastic modulus
� ln Eeff

standard deviation of logarithm of effective elastic
modulus

� ln F standard deviation of log-pile load
� ln W standard deviation of ln W

� lag distance
� standard normal cumulative distribution function

�gs geotechnical resistance factor
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