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ABSTRACT

In practice, inherent soil variability is not commonly considered in routine slope stability analysis. This is due mainly
to the fact that the effect of soil variability is complex and difficult to quantify. Furthermore, the majority of available
slope stability analysis computer programs used in practice, which adopt conventional limit equilibrium methods, are
unable to consider this aspect explicitly. To predict the stability of a slope more accurately, especially the marginally
stable ones, the effect of soil variability needs to be accounted for. In this paper, an advanced probabilistic analysis
method called the random finite element method (RFEM), developed by Griffiths and Fenton in the 1990s, is used to
investigate the effect of soil variability on the reliability of a ¢-¢’ soil slope. The results from the probabilistic study
demonstrate that soil variability has a significant effect on the reliability of a slope. It is concluded that the
deterministic factor of safety (FOS) is not a reliable measure of the true safety of a slope with spatially variable soils.

1 INTRODUCTION

It is well recognised that the underlying soil profiles of a natural slope are unlikely to be completely uniform and
homogenous, due largely to the complex deposition and alteration processes which influence soil materials. Even
within a so-called ‘homogenous’ soil layer, soil properties tend to vary from one location to another (Vanmarcke,
1977). This inherent variation of soil properties in distance or space is known as spatial variability. In routine practice,
the stability of a slope is usually assessed using conventional limit equilibrium methods, and the soil profiles are often
assumed to be uniform and homogenous. The conventional slope stability analyses are usually performed within a
deterministic analysis framework where single best estimates or characteristic values for soil parameters are used. To
account for the variability and uncertainty in soil properties, a higher factor of safety (FOS) is usually adopted. As a
result, the conventional slope stability analysis approach may give a poor estimate of the potential failure of a slope
because the effect of soil variability is not properly modelled and accounted for.

Probabilistic analysis is a more realistic approach to assess slope stability because the uncertainty and variability in soil
properties can be explicitly accounted for. Unlike a deterministic analysis, which is based on assumed characteristic
values of soil properties, a probabilistic analysis considers the variable nature of soil properties, based on their statistical
characteristics. The latter approach leads to a more realistic measure of the stability of a slope, which is usually
characterised by the probability of failure, Py, or reliability index. One of the available probabilistic analysis methods is
the random finite element method (RFEM) (Griffiths and Fenton, 2000, 2004; Fenton and Griffiths, 2008; Griffiths et
al. 2009), which combines random field simulation with finite element analysis. RFEM is a powerful probabilistic
method for slope stability analysis because the spatial correlation of soil properties is modelled explicitly and no
assumption about the shape or location of the failure surface is required to be made in advance. Failure occurs through
soil elements whose shear strength is lower than the applied shear stresses and is associated with excessive distortion of
these elements. This paper investigates the effect of soil variability on the stability of a cohesive-frictional (c™-¢') soil
slope using a freely available' RFEM computer program called rslope2d.

2 OVERVIEW OF THE PROBABILISTIC ANALYSIS METHODOLOGY

The procedures for probabilistic slope stability analysis adopted in the computer program rslepe2d, which is based on
the RFEM, can be summarised as follows:

1.Simulate a 2-dimensional (2-D) spatially random soil profile based on the prescribed statistical parameters of
the chosen soil properties,

2.Perform finite element slope stability analysis on the simulated soil profile to determine whether the slope
‘fails” under specific convergence criteria and
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3.Repeat Steps 1 and 2 many times as part of the Monte Carlo simulation process to establish the probability of
failure, Pr

Descriptions of each process are presented in the following sections.

2.1 SIMULATION OF SPATIALLY RANDOM SOIL PROFILE

To incorporate soil variability in slope stability analysis, it is essential to generate a soil profile that can represent the
variability and spatial correlation of the properties of real soil deposits. In rslepe2d, a 2-D spatially random soil
profile is generated based on random field theory (Vanmarcke, 1977; 1983), which makes use of three statistical
properties: the mean, g, the variance, o”, or standard deviation, o, and the scale of fluctuation, 8. The standard
deviation, o, can be expressed in terms of the dimensionless coefficient of variation, COV, defined as:

COV=c/u (1)
The scale of fluctuation, 0, is a parameter describing the spatial correlation of soil properties with distance. A small
value of & implies rapid fluctuation of the soil property in space about the mean, whereas a large value of 0 implies a
smoothly varying field.

Prior to the random field generation process, it is important to identify the soil parameters that are required to be treated
as random variables. The soil constitutive model used in the elastoplastic finite element slope stability analysis
algorithm in rslope2d consists of the following input parameters: (1) effective cohesion, ¢* (2) effective friction
angle, ¢'; (3) unit weight, 3 (4) dilation angle, y; (5) Young’s Modulus, £,; and (6) Poisson’s ratio, v.

The parameters ¢’ and ¢’ commonly represent the soil shear strength behaviour, and the Mohr-Coulomb failure criterion
was adopted. The dilation angle, y, expresses the volume change of the soil during yielding while the elastic
parameters (i.e. Young’s modulus, E;, and Poisson’s ratio, v) which are used to compute deformations prior to yielding
of the soil element in slope stability analysis, have little influence on the predicted factor of safety (Griffiths and Lane,
1999). Griffiths and Lane (1999) also concluded that the most important parameters in finite element slope stability
analysis are the same as those used in the traditional limit equilibrium approach, namely, the strength parameters ¢’ and
¢', unit weight, y, and the geometry of'the slope. Hence, it is logical to assume that, in a probabilistic analysis, only the
variability of the cohesion, friction angle and unit weight, influence the probability of failure of a slope.

In addition, a previous probabilistic study conducted by Alonso (1976) concluded that the influence of the soil density
or unit weight on the probability of failure of a clay slope is relatively small compared with the shear strength
parameters. This is due to the fact that the variability of soil unit weight is usually small, as published in the literature
(e.g. Lee er al., 1983; Phoon and Kulhawy 1999; Duncan, 2000; Baecher and Christian, 2003). Therefore, throughout
this study, only the shear strength parameters ¢’ and ¢’ are modelled as random fields, while the other parameters are
held constant and treated deterministically. The variability of the shear strength parameters ¢’ and ¢’ is characterised by
a lognormal distribution. This is because the lognormal distribution avoids the generation of negative values of strength
parameters ¢’ and ¢’ that a normal distribution allows. Furthermore, available field data indicate that some soil
properties are well represented by a lognormal distribution (e.g. Hoeksema and Kitanidis, 1985; Sudicky, 1986;
Cherubini, 2000).

To generate random fields of a soil property (i.e. ¢’ or ¢, random field theory is implemented in rslope2d using the
local average subdivision (LAS) method developed by Fenton and Vanmarcke (1990). This method produces
correlated local averages of the soil property based on a standard normal distribution function (i.e. having zero mean
and unit variance) and a spatial correlation function. An isotropic exponentially decaying (Markovian) correlation
function is assumed in this study, and it can be expressed as:

plr)= exr{— %} )

where p = correlation coefficient between the underlying random field values at any two points separated by a lag
distance 7.

If a soil property X (i.e. c' or ¢) is assumed to be characterised statistically by a lognormal distribution defined by a
mean, uy, and a standard deviation, oy, the local averages of a standard normal random field, G(x), generated by the
LAS method is then necessary to be transformed into a lognormal distribution using the following relationship:

X; = explu, x +01,xGlx, )} (3
where x; is the vector containing the coordinates of the centre of the ith element; X; is the soil property value assigned to
that element; wnx and o,y are the mean and standard deviation, respectively, of the underlying normally distributed
InX. mnyand o,y can be computed using Equations (4) and (5), respectively, as shown below:
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Moy =lnpy -Loly (4)

Clux = Jinfl +COV3: ) 5)

Once the random field is transformed into the desired lognormal field, it is then mapped onto the finite element mesh,
which is established according to the user-defined slope geometry. Each element within the slope geometry is assigned
arandom variable of the particular soil property (i.e. ¢’ or ¢).

The relationship or cross-correlation between the strength parameters ¢”and ¢ is poorly understood and no consensus is
provided in the literature. In addition, it is strongly dependent on the soil being studied (Fenton and Griffiths, 2003).
However, Cherubini (2000) reported values of cross-correlation between ¢’ and ¢’ ranging from —0.24 to -0.70. In

rslope2d, cross-correlation between ¢’ and ¢' is implemented using the covariance matrix decomposition approach
(Fenton, 1994).

22 FINITE ELEMENT SLOPE STABILITY ANALYSIS

The finite element slope stability analysis algorithm in rslope2d assumes 2-D and plain strain conditions. It uses an
elastic-perfectly plastic stress-strain law with a Mohr-Coulomb failure criterion. It utilises 8-node quadrilateral
elements with reduced integration in the gravity loads generation, stiffhess matrix generation and stress redistribution
phases of the algorithm. The theoretical basis of the method is described fully by Smith and Griffiths (1998; 2004) and
the application of the finite element method in slope stability problems is described by Griffiths and Lane (1999),

In brief, the analyses involve the application of gravity loading and the monitoring of stresses at all Gauss points. The
forces generated by the self-weight of the soil are modelled by a standard gravity ‘turn-on’ procedure. This procedure
generates normal and shear stresses at all Gauss points within the mesh and the soil is initially assumed to be elastic.
These stresses are then compared with the Mohr-Coulomb failure criterion, which can be written in terms of principal
stresses as follows:

. . O;—0 ; .
sin g’ —— 5 2 —¢'cos g’ (6)
where o, and o; are the major and minor principal stresses.

If the stresses at a particular Gauss point lie within the Mohr-Coulomb failure envelope (# < 0), then that location is
assumed to remain elastic. If the Mohr-Coulomb failure criterion is violated (¥ = 0), then that location is assumed to be
yielding. Yielding stresses are redistributed to neighbouring elements that still have reserves of strength. The plastic
stress redistribution is accomplished by using a visco-plastic algorithm (Zienkiewicz and Cormeau, 1974). This is an
iterative process which continues until the Mohr-Coulomb failure criterion and global equilibrium are both satisfied at
all Gauss points within the mesh.

The finite element algorithm in rslope2d computes a deterministic factor of safety (FOS) based on the mean values of
the shear strength parameters using the strength reduction method (Matsui and Sun, 1992). The FOS of a slope is
defined as the factor that the original shear strength parameters must be divided by in order to bring the slope to the
point of failure. The strength parameters at the point of failure, ¢y and ¢ , are therefore given by:

¢y =¢'[FOS Q)

$r= tan~" (tan ¢'/FOS) £))

This definition of the factor of safety is essentially the same as that used in limit equilibrium methods, which is defined
as the ratio of shear strength of soil to shear stress required for equilibrium (Duncan, 1996). Validation studies
conducted by Griffiths and Lane (1999) indicate good agreement between the FOS computed by the finite element
method and that obtained from the stability charts developed by Taylor (1937) and Bishop and Morgenstern (1960).

In rslope2d, non-convergence of the algorithm within a user-specified maximum number of iterations or iteration
limit is used as an indicator of slope failure. A slope is considered to have ‘*failed” when no stress distribution can be
found that simultaneously satisfies both the Mohr-Coulomb failure criteria and global equilibrium (Griffiths and Lane,
1999). This is usually accompanied by a dramatic increase in the nodal displacements within the mesh. Griffiths and
Fenton (2004) reported that an iteration limit of 500 was adequate to ensure convergence of solutions for a case study of
a 2H:1V cohesive slope problem. The iteration limit required for the ¢-¢' slope problem considered in this paper is
investigated and discussed later.

2.3 MONTE CARLO SIMULATION

Based on a given set of soil property statistics (mean, standard deviation and scale of fluctuation), there are an infinite
number of possible random fields that can be generated. Although these random fields have the same statistics, the
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arrangement of the ‘strong” and ‘weak” soil elements is different in each random field realisation, which in turn yields
different outcomes in the finite element analyses. Hence, probabilistic analysis involves the repeated finite element
examination of every single realisation of the generated random fields, as part of the Monte Carlo simulation process.
The probability of failure, Py, of a slope is estimated by the following relationship:

1y

n

Frw ®

sim

where n; = number of realisations reaching failure; and n,, = total number of realisations in the simulation process.

The accuracy of the estimated probability of failure depends on the number of realisations in the Monte Carlo
simulation process. In general, the accuracy increases as the number of realisations increases. However, it is important
to determine the minimum number of realisations to produce a reliable and reproducible result. The reason is that
repetitive finite element analysis is very time consuming and the estimation of Py usually converges within a certain
number of realisations. Any further increase in the number of realisations will not improve the estimation greatly, but
will adversely affect the computational time and effort. Griffiths and Fenton (2004) reported that 1,000 realisations of
the Monte Carlo simulation process was adequate for a 2H:1V cohesive slope problem in order to produce converged
estimations of the probability of failure. The minimum number of realisations required for the ¢-¢' slope problem
considered in this paper is discussed later.

3 DESCRIPTION OF THE NUMERICAL STUDIES UNDERTAKEN

This paper deals with the ¢’-¢' slope problem, involving an effective stress analysis. Effective or drained cohesion, ¢,
and friction angle, ¢, are the shear strength parameters. The soil shear strength is defined by the Mohr-Coulomb failure
criterion. The slope geometry, together with the finite element mesh used, is presented in Figure 1. The slope has a
height, H, of 10 m, and a gradient of I[H:1V. A fixed base is assumed at the lower boundary and rollers are assumed at
the two vertical boundaries. The element size was fixed at 0.5 m x 0.5 m, for the purpose of modelling soil with small
scales of fluctuation, 8. A deep water table was assumed in this study, hence, the effect of pore water pressure was not
considered in the analysis.

The shear strength parameters ¢’ and ¢’ were modelled as random variables and both were described by a lognormal
distribution. Other parameters were held constant, e.g. slope height, H = 10 m; unit weight, ¥ = 20 kN/m*; Young’s
modulus, £,= 1 x 10° kPa; Poisson’s ratio, v= 0.3; and dilation angle, y=0°.

H Sl H

Y

Figure 1: Mesh and slope geometry used for the ¢ ¢’ slope problem.

In the process of simulating the seil profiles, random fields of ¢’ and ¢' were generated independently, based on their
prescribed statistical parameters (i.e. mean, standard deviation, and scale of fluctuation). The standard deviation, o,
were expressed in terms of the coefficient of variation, COV, while the scale of fluctuation was expressed in the
dimensionless form of 6/H.

In the first part of the parametric studies, the mean values of cohesion and friction angle were held constant at 10 kPa
and 30°, respectively. The COV of ¢’ and ¢, and 6/H were varied systematically according to Table 1. It is noted that
the COV of ¢' is assumed to be half of the COV of ¢. This is due to the fact that the variability of the friction angle is
generally smaller than that of cohesion, based on the published data from the literature (e.g. Lee ef al., 1983; Phoon and
Kulhawy, 1999; Baecher and Christian, 2003). These data indicate that the COV of cohesion is in the range of 0.1 —
0.5, while the friction angle is in the range of 0.05 — 0.15. No cross-correlation between ¢’ and ¢ was assumed in the
first part of analysis. Cross-correlation between ¢’ and ¢ is investigated and discussed later. An isotropic scale of
fluctuation was assumed throughout the analysis.
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Table 1: Input values of COV and 8/H used in the ¢™-¢' slope problem.

Parameters Input values
Ccov, 0.1,0.2,03, 0.4, 0.5
COVy 0.05, 0.1, 0.15, 0.2, 0.25

6/H 0.1,0.5,1,5,10

4 RESULTS AND DISCUSSIONS

4.1 DETERMINISTIC SOLUTIONS

Deterministic analyses were conducted using both the finite element method and the limit equilibrium methods, based
on the mean values of the shear strength parameters, i.e. ¢’ = 10 kPaand ¢’ = 30°. The limit equilibrium solution was
obtained by using the commercial slope stability analysis software SLOPE/W (GEO-SLOPE International Ltd., 2008).
The computed factor of safety (FOS), based on a simplified Bishop’s method, is 1.22. The critical slip surface of the
slope is shown in Figure 2, which indicates a ‘toe’ failure. Toe failure is generally expected in a ¢-¢' slope problem due
to the low value of effective cohesion. The FOS computed by the finite element method using rslope2d is 1.12,
which is comparable with that obtained from the limit equilibrium method.

Elevation

Model: Mohr-Coulomb
s Unit Weight 20 kNAn*
Cohesion. 10 kPa
Phi: 30 *

o s n 5 E = B
Distance

Figure 2: Critical slip surface obtained from SLOPE/W using simplified Bishop’s method (FOS = 1.22).

4.2 ITERATION LIMIT AND NUMBER OF REALISATIONS

Preliminary analyses were conducted to determine the iteration limit, maxit, and number of realisations, Ry, required to
produce a reliable estimate of the probability of failure, P. Figure 3 indicates that an iteration limit of 1,000 is required
for a ¢™-¢' slope problem in order to obtain a stable estimation of P. Figure 4 indicates that 4,000 realisations would
give areliable and reproducible estimate of Pr. As a result, maxit = 1,000 and n,,, = 4,000 were adopted in this study.
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Figure 3: Effect of number of iterations on Py
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Figure 4: Effect of number of realisations on Py

4.3 EFFECT OF COV AND 6/H ON PROBABILITY OF FAILURE

As mentioned above, the deterministic FOS computed by the finite element and limit equilibrium methods are 1.12 and
1.22, respectively, which suggest that the slope is marginally stable. The deterministic solution is based on the
assumption that there is no variability of soil properties (i.e. COV — 0), as well as the soil profile is uniform and
homogenous (i.e. 8 — «). This section deals with the influence of incorporating soil variability on the stability of a ¢’
¢' slope.

Figure 5 shows the typical deformed meshes for the c’-¢' slope being considered, with 8/H of 0.1 and 10, respectively.
The COVs of ¢’ and ¢' are fixed at 0.3 and 0.15, respectively. Dark and light regions indicate ‘strong’ and ‘weak’ soil
clements, respectively. It can be observed from Figure 5 that a smaller value of 0 generates a more rapidly varying soil
profile with distance (i.e. a more spatially random soil profile), while a larger value of & generates a more continuously
varying soil profile (i.e. a more uniform soil profile). It is noted that the finite element method predicted a similar
failure mechanism as that obtained from the limit equilibrium method. No noticeable difference in the failure mode,
between soils with small and large scales of fluctuation, is observed in this case.

(b)

Figure 5: Typical deformed mesh at slope failure for the ¢*-¢’ slope with (a) 8/H= 0.1
(b) 8/H= 10, (COV, =2C0OV,;=0.3).
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Figure 6 shows the variations of P, with COV of ¢’. As discussed earlier, COV of ¢’ was assumed to be equal to half of
that of ¢”. It is observed that, Py increases as COV increases, for all cases of O/H. To achieve practically no failure in
the slope, the COV of ¢’ and ¢’ must be smaller than 0.1 and 0.05, respectively. When the COV of ¢’ and ¢ is varied
within the range suggested in the literature, Py as high as 0.38 is obtained, which indicates a high likelihood for slope
failure. It is noted that, as the COV increases, lower values of shear strength parameters (i.e. ¢’ and ¢") are likely to be
encountered, and more often, in any single realisation. These low values tend to control the stability of the slope and
the chances of a “failed” slope (i.e. having a FOS < 1.0) to occur increase accordingly.
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Figure 6: Effect of varying COVs on probability of failure for different values of 6/H.

Figure 7 shows the effect of varying 0/H on Py, for different COVs of ¢’ and . It can be seen that, for all cases of COV
of ¢" and ¢, Pyincreases as 0/H increases. This observation is similar to that found in the cohesive slope problem
(Griffiths and Fenton, 2004; Chok et al., 2007a, 2007b). This is because, by increasing the 8/H, the variation in the
output statistic is also increased due to the effects of local averaging and variance reduction along the failure surface
and this consequently increases the chances of a “failed’ slope to occur. It should be noted that assuming a perfectly
correlated soil profile (i.e. 6/H — o) and completely ignoring the spatial correlation in probabilistic slope stability
analysis could overestimate the probability of failure of a slope, as observed in Figure 7. In real soil deposits, the scale
of fluctuation of soil properties will lie between the two extreme cases: completely random soils (i.e. 6/H — 0) and
perfectly correlated soil profiles (i.e. 6/H — o).
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Figure 7: Effect of varying 8/H on probability of failure for different COVs of ¢’ and @'
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44 COMPARISON OF PROBABILITY OF FAILURE AND FACTOR OF SAFETY

In this section, the mean values of ¢’ and ¢’ are varied, and the Py is compared directly with the deterministic FOS. The
mean values of ¢’ and ¢’ that were considered in the analysis, and their corresponding values of deterministic FOS, are
summarised in Table 2. Figure 8 shows the direct comparison between P,and FOS, for different values of COV of ¢’
and ¢ The value of ©/H was fixed at 1 in this case. It is observed that, Py decreases as FOS increases, as expected.
The curves intersect at the point Py=0.75 and FOS = 0.95. When FOS < 0.95, a larger COV leads to a lower value of
Py In contrast, when FOS > 0.95, a larger COV leads to a higher value of P, It is also noted that, for the case with
COV.. = 2COVy = 0.5, FOS greater than 1.6 is required to reduce £ to insignificant levels (i.e. below 1/4000). In
practice, any slope with a FOS = 1.5 would generally be regarded as a stable slope. The results shown in Figure §
suggest that the deterministic FOS is not a reliable measure of the true safety of'a slope. In fact, the FOS is meaningful
only when the COV of the strength parameters is very small (i.e. COV,. =2C0OV<0.1).

Figure 9 shows plots of P, versus FOS for different values of 6/H, with COV, = 2COV4 = 0.5. In this case, the
intersection point occurs approximately at £y= 0.6 and FOS = 1.0. When the FOS < 1.0, a larger value of 6/H leads to a
lower value of Py which indicates that the 8/H = o case is unconservative. On the other hand, when the FOS > 1.0, a
larger value of 6/H leads to a higher value of P; which indicates that the 6/H = oo case is conservative.

Table 2: FOS for c¢'-¢' slope with different mean values of ¢’ and ¢'.

te (kPa) Hy (degrees) FOS
0 20 0.38
0 30 0.60
10 20 0.88
10 30 1.12
20 20 1.25
20 30 1.55
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Figure 8: Probability of failure versus factor of safety for different COVs of ¢"and ¢' (6/H=1).
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Figure 9: Probability of failure versus factor of safety for different values of 6/H (COV,=2C0V4=0.5).

4.5 EFFECT OF ¢’ — ¢’ CORRELATION ON PROBABILITY OF FAILURE

The results discussed so far are based on the assumption of no cross-correlation between the parameters ¢’ and ¢'.
Analyses were conducted to investigate the influence of the ¢'-¢' correlation. The cross-correlation between ¢’ and ¢'is
defined by the correlation coefficient, p, as previously discussed. Values of p=-1,0, and 1, correspond to a
completely negatively correlated, uncorrelated, and completely positively correlated soil, respectively. In this study,
values of p=—1,-0.5, 0, 0.5 and 1 were considered. Cherubini (2000) reported that ¢’ and ¢’ are negatively correlated,
with values ranging from —0.24 to ~0.70, as mentioned previously.

Figure 10 shows the variations of P, with respect to ¢'~¢' correlation, p, for slopes with different values of COVs of ¢’
and ¢', and 0/H. The results indicate that, for all cases of COV and 6/H, negative correlation between ¢’ and ¢’ leads to
a lower estimate of P, while positive correlation leads to a higher estimate of P so that if the actual correlation is
negative, as is commonly thought, then the assumption of independence is conservative as it gives higher failure
probabilities.
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Figure 10: Probability of failure versus p for different values of COVs of ¢’ and ¢', and 6/H.
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5 SUMMARY AND CONCLUSIONS

The random finite element method (RFEM) was used to investigate the influence of soil variability on the reliability of
a spatially variable ¢'—¢' soil slope. The spatial variability of soil properties was modelled by the coefficient of
variation, COV, and the scale of fluctuation, 8. Parametric studies were conducted to investigate the effect of varying
COV and 0 on the probability of failure, Py, of a slope. The effective shear strength parameters (i.e. ¢’ and ¢') were
treated as spatially random variables, which were assumed to be lognomally distributed. The probability of failure, Py
of a slope was computed via the Monte Carlo simulation process.

The results of numerical studies indicated that both COV and 68/H have a significant effect on the estimated P, It was
generally found that, Pyincreased as COV and 6/H increased. It can be concluded that ignoring the spatial correlation
in probabilistic slope stability analysis (i.e. 6/H — ) could overestimate the probability of failure of a slope. Direct
comparison between the probability of failure, P, and the deterministic factor of safety (FOS) was made and the results
indicated that values of FOS as high as 1.5 were associated with significant probabilities of failure when the COV was
varied within the range suggested in the literature. It can be concluded that the deterministic FOS becomes unreliable
when the variability in soil properties is significant. It was also determined that, assuming negative correlation between
c'and ¢’ leads to a lower estimate of Py, while positive correlation between ¢’ and ¢’ leads to a higher estimate of Py,
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