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The paper expands on previous work by the authors on bearing capacity of random c0 � /0 soils using the
random finite element method. The refinements in the present work include the influence of embedment,
soil self-weight and anisotropy which were not considered previously. The study focuses on a grey-blue
clay from Taranto in Italy, for which stochastic strength parameters were well documented. Results show
that the influences of embedment, self-weight and anisotropy can be significant and lead to more realistic
estimates of bearing capacity reliability. Finally a probability distribution of the bearing capacity was
estimated and used to calibrate safety factors for reliability purposes.
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1. Introduction

An increasing number of studies in the field of geotechnical
engineering are considering the random character of subsoil when
analysing the bearing capacity of a shallow foundation. This issue
is important because it allows for the optimisation of structures
that interact with soil, which are often a substantial part of the
design and construction processes. The basic approach is to model
the random variability of soil properties. Several papers on this
subject were published in the 1960s and early 1970s, including
the pioneering works of Lumb [21,22] and Schultze [29]. With
the development of numerical methods and the increasing
computational ability of computers, techniques for including the
spatial variability of soil have been developed, leading to the mod-
elling of soil parameters via random fields. The concepts of random
functions and random fields appeared in papers by Lumb [23] and
Alonso and Krizek [3]. In particular, the work of Vanmarcke [31–
33] was of great importance to subsequent research. Applications
of random fields in the modelling of soil parameters grew signifi-
cantly following the work of Fenton and Vanmarcke [10], who
developed methods of generating random fields with the use of
the local average subdivision (LAS). Similar concepts have
appeared in the modelling of geological deposits, especially in
the work of Krige [19,20] and Zubrzycki [34]. It was only after ran-
dom field concepts were combined with advanced finite element
analysis [16] that meaningful practical geotechnical applications
became feasible.

Griffiths and Fenton [15], Fenton and Griffiths [11] and Fenton
et al. [14] studied the bearing capacity of a shallow foundation
on soil with random characteristics. The analyses were performed
using the random finite element method (RFEM), whose algo-
rithms are a combination of random field theory, the classical finite
element method (FEM) and Monte Carlo simulations (e.g., Fenton
and Griffiths [13]). A special feature of this algorithm is that it uses
multiple repetitions of calculations for different realisations of the
random field. Thus, both the expected value of the random
resistance from the realisation set and the probability distribution
can be estimated with the use of Monte Carlo simulations and the
resulting large number of realisations.

In recent years there have been a few modelling studies com-
bining random fields with FEM for bearing capacity evaluations.
In the paper by Kasama and Whittle [18] the bearing capacity of
undrained soil was investigated using numerical limit analysis. In
this study the undrained shear strength was modelled as an
isotropic random field. The paper by Rahman and Nguyen [27] also
considered undrained bearing capacity but expanded the analyses
to include anisotropic random field modelled by Local Average
Subdivision Method. Cassidy et al. [6] considered combined load-
ing of strip footings subjected to vertical, horizontal and moment
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Nomenclature

c cohesion
/ friction angle
v Poisson ratio
E Young’s modulus
c soil unit weight
p PI
B footing width
D footing high of embankment
qf = qult ultimate bearing capacity
qFEM bearing capacity value computed by finite element

method
qd bearing capacity design value
Nc bearing capacity factor – cohesion
Nc bearing capacity factor – unit weight
Nq bearing capacity factor – overburden pressure
pf probability of failure
b reliability index
U cumulative distribution function of the standard dis-

tribution
xi single realisation of random variable x
f(x) probability density function
E[X] expected value
Var[X] variance
q correlation function

s separation vector absolute distance between points in
field

cVAR Variance reduction function
llnx mean value in underlying normal distribution
lc mean value of cohesion
l/ mean value of friction angle
lx mean value in lognormal distribution
lqf mean value of bearing capacity
rx standard deviation in lognormal distribution
rlnx standard deviation in underlying normal distribution
rc standard deviation of cohesion
r/ standard deviation of friction angle
rqf standard deviation of bearing capacity
COVc coefficient of variation of cohesion
COV/ coefficient of variation of friction angle
COVqf coefficient of variation of bearing capacity
h fluctuation scale, correlation length
hc fluctuation scale of cohesion
h/ fluctuation scale of friction angle
hx horizontal fluctuation scale
hy vertical fluctuation scale
h/B fluctuation scale normalised on footing width
Glnc Gaussian random field of cohesion
G/ Gaussian random field of friction angle
FS factor safety
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loads. It is worth mentioning new simulation approaches recently
proposed by Ahmed and Soubra [1] and by Al-Bittar and Soubra [2].
Fenton and Griffiths [11] analysed the bearing capacity of a surface
footings on c0 � /0 soils, i.e., soils with no footing embedment. In
that study, the soil unit weight was ignored and the random fields
of cohesion and the internal friction angle were assumed to be iso-
tropic, i.e., the spatial correlation was the same in both the vertical
and horizontal directions.

This article is a supplement to and continuation of the
aforementioned work. The algorithm used by Fenton and
Griffiths [11] was expanded to consider foundation embedment
and soil unit weight. In addition, the influence of anisotropic ran-
dom fields and the cross-correlation between soil parameters
was investigated.

2. Assumptions used in the computations

The traditional computational approach of estimating the bear-
ing capacity under drained conditions presupposes the designation
of the bearing capacity with the use of the Terzaghi equation [30],
which is based on the mechanism described by Prandtl [25]:

qf ¼ c0Nc þ qNq þ
1
2
cBNc ð1Þ

where qf is the bearing capacity, c0 is the cohesion, q is the overbur-
den pressure, c is the soil unit weight, B is the footing width, and Nc,
Nq and Nc are the bearing capacity factors, which depend on the
internal friction angle, /0. The study by Fenton and Griffiths [11],
using the RFEM, only considered the component of Eq. (1) associ-
ated with the cohesion, i.e.,

qf ¼ c0Nc ð2Þ

in which the bearing capacity factor, Nc, is given by Ref. [25]:

Nc ¼
exp p tan /0ð Þ tan2 p

4 þ
/0

2

� �
� 1

tan /0
ð3Þ
The current study includes all elements of Eq. (1) while also
considering the influences of different effects of random soil resis-
tance. The computational scheme of the study is summarised in
Fig. 1.

Soil parameters were modelled as random fields characterised
by probability distributions and a specified correlation structure.
The soil analysed was Taranto Blue Clay, whose properties have
been described by Cafaro et al. [4], Cafaro and Cherubini [5],
Cherubini [8] and Cherubini et al. [9]. The statistical data were
obtained using in situ tests, including CPT penetration tests.

Each test result is described using a trend function with the
parameters corresponding to the mean value and residual variance
of the parameter around the trend. The results are presented in
Table 1.

The fluctuations of these values were then modelled using ran-
dom fields with a zero mean and unit standard deviation. The
correlation structure was isotropic and characterised by the
vertical values of the fluctuation scale [31], which was measured
by Cafaro and Cherubini [5]. Weak (or wide-sense) stationarity of
Fig. 1. Computational scheme used in the analysis.



Table 1
Trend and scale of fluctuations from CPT tests [5].

Borehole Trend Vertical scale of fluctuation hy (m)

Upper clay
1 y = 54.671x2 � 21.21x + 5301 0.195
2 y = 12.44x2 + 113.06x + 2950 0.401
3 y = 40.713x2 � 439.7x + 5601 0.207
4 y = 73.690x2 � 172.2x + 9753 0.401
5 y = 11.027x2 + 212.3x + 2541 0.436

Lower clay
1 y = 149.11x + 4732 0.536
2 y = 319.58x + 1722 0.287
3 y = 201.29x + 3700 0.720
4 y = 201.14x + 4036 0.269
5 y = 203.34x + 3699 0.185

y denotes the cone resistance (kPa), and x is the depth (m).

Fig. 2. CUSUM test for CPT testing of the upper layer in borehole 1 (c.f. Table 1);
graph showing the residual parts remaining after removal of the linear and
quadratic trends [5].

Table 2
Characteristics of variable mechanical properties of the Taranto Blue Clay.

Mean value lX Standard deviation rX

Cohesion (c) 36 kPa 20 kPa
Friction angle (/) 20� 4.8�
Self-weight (c) 19 kN/m3 Deterministic
Young’s modulus (E) 36,000 kPa Deterministic
Poisson ratio (m) 0.29 Deterministic
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this field was verified by Cafaro et al. [4] via the CUSUM test [24].
An example is shown in Fig. 2.

To determine the scale of fluctuation, a method of aligning the
theoretical correlation coefficient to the empirical one, as
described by Vanmarcke [31], was applied. The vertical variability
of the Taranto Blue Clay was determined by analysing the parame-
ter variability over the sampled depth; it was further characterised
by a scale of vertical fluctuations (see Table 1). Unfortunately,
there was no analysis of the scale of horizontal fluctuations (hx)
in the framework described by Cafaro et al. [5]. Soil property values
of the Taranto Blue Clay strength parameters are presented in
Table 2.

In the present study, a lognormal random field was applied for
the cohesion to ensure non-negative values of x. The probability
density function of a lognormal distribution is given by the follow-
ing equation:

f ðxÞ ¼
1

xrln X
ffiffiffiffi
2p
p exp � 1

2
ln x�lln X

rln X

� �2
� �

if x > 0

0 if x 6 0

8<
: ð4Þ

where llnX and rlnX are the underlying normal distribution parame-
ters. The relationships between these parameters and the mean and
variance of the lognormal distribution (lX, r2

X) are given as follows:

lX ¼ E½X� ¼ exp lln X þ
1
2
r2

ln X

� �
ð5Þ

r2
X ¼ Var½X� ¼ l2

X expðr2
ln XÞ � 1

	 

ð6Þ
The mean value (lX) and standard deviation (rX) were assigned
the values shown in Table 2. In the case of the random field, which
characterises the friction angle, a bounded distribution centred on
the interval [a, b] with the following probability density function
was assumed, as proposed by Fenton and Griffiths [11]:

f ðxÞ ¼
ffiffiffi
p
p
ðb�aÞffiffi

2
p

sðx�aÞðb�xÞ exp � 1
2s2 p ln x�a

b�x

	 

�m

� �2
n o

if x 2 ða; bÞ

0 ifx R ða; bÞ

(

ð7Þ

This distribution corresponds well with the bounded interval of
the friction angle variability; the distribution depends on four
parameters, the minimum (a = /min) and maximum (b = /max)
values of the friction angle and two additional parameters, s and
m. The parameter s affects the shape of the density function (and
indirectly affects the standard deviation), and the parameter m
affects the position of the mean value. In the case of m = 0, the
mean value is in the middle of the interval [/min, /max], and
the standard deviation in the bounded distribution can only be
approximated using the first-order Taylor expansion:

rX �
1
2
ðb� aÞ 2s

p e2lX � e�2lX þ 2ð Þ ð8Þ

Using the values in Table 2, the minimal value is set to /min = 5�,
and the maximum value to /max = 35�, with s = 2.27 and m = 0.

The random fields for the mechanical properties of the soil were
generated using local average subdivision (LAS) [10]. LAS yields a
normal distribution; therefore, data must be transformed if non-
normal distributions are required, as in this case (cohesion is log-
normal and friction is angle-bounded). In the case of cohesion,
the mean value and standard deviation of the underlying normal
distribution (lnc) are given by Eqs. (9) and (10), respectively.

lln c ¼ ln lc �
1
2
r2

ln c ð9Þ

r2
ln c ¼ ln 1þ r2

c

l2
c

� �
ð10Þ

The correlation structures of the underlying Gaussian random
field, Glnc(x), were determined using the Markov correlation coeffi-
cient, q:

q ¼ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

hx

� �2

þ 2s1

hy

� �2
s8<

:
9=
; ð11Þ

where s1 = y2 � y1 and s2 = x2 � x1 define the absolute distance
between the two points in 2D space and hx and hy are the values
of the horizontal and vertical fluctuation scales, respectively. In
the present study, the vertical fluctuation scale was based on results
provided in Table 1. Therefore, four different value were considered:
hy = 0.2 m, hy = 0.5 m, hy = 0.7 m, and hy = 1.0 m. The assumptions
concerning the horizontal fluctuation scale, hx, are specified in
Section 3.2. To generate fields, it is necessary to determine the
respective scales of fluctuation. Theoretically, scales can be different
for the cohesion (hc) and internal friction angle (h/) fields, however



Fig. 3. Convergence speed of the random value of the bearing capacity: (a) mean value of the bearing capacity versus sample size; (b) standard deviation of the bearing
capacity versus sample size.

232 J.M. Pieczyńska-Kozłowska et al. / Computers and Geotechnics 67 (2015) 229–238
within this study it has been assumed that fluctuations scales are
the same for both strength parameters (hc = h/). This seems a rea-
sonable assumption based on limited information (especially relat-
ing to spatial correlation lengths), but more importantly soil
depositional processes. If the stiffness and strength are positively
correlated in a soil, it seems reasonable that the spatial correlation
trends for both parameters will be similar. Given the lack of good
quality data on the spatial correlation properties of soil, the correla-
tion lengths of the lognormal and normal fields are assumed to be
sufficiently similar for the purposes of the parametric studies pre-
sented in this paper. Inclusion of the mathematical relationships
between the correlations is beyond the scope of the present work,
however the interested reader is referred to Fenton and Griffiths
[12] for further discussion.

Moreover, it was assumed that the cohesion random field and
internal friction angle random field were mutually stochastically
independent. This assumption might be controversial because ear-
lier papers reported a negative correlation between the soil
strength parameters / and c. However, as discussed elsewhere
[26], when the correlation (between c and /) is assumed to equal
zero the average bearing capacity is lower than any other average
bearing capacity when correlation is assumed to be negative. On
the other hand the standard deviation of bearing capacity under
assumption of zero correlation is greater than any other bearing
capacity standard deviation obtained under assumption of nega-
tive correlation.

Then, the random field of the lognormal distribution is obtained
using the following equation:
cðxÞ ¼ exp lln c þ rln cGln cðxÞ
 �

ð12Þ

In the case of the internal friction angle, the standard Gaussian
field, G/(x), is generated with a correlation structure equal to that
of the cohesion field. After generating the random field (G/(x)), the
transformation to the bounded distribution field is obtained using

/ðxÞ ¼ /min þ
1
2
ð/max � /minÞ 1þ tanh

sG/ðxÞ
2p

� �� �
ð13Þ

As previously mentioned, the computational core of the RFEM is
the FEM. The bearing capacity of the soil was estimated using the
FEM with an elastic perfectly plastic model and the Mohr–
Coulomb failure criterion [28]. The random fields were adjusted
to account for element size in the finite element mesh using the
method of local averaging described by Fenton and Vanmarcke
[10]. As a result, the mean value of the random field within a single
element remained constant; the standard deviation changed and
was averaged using the variance reduction function as follows:

cvar ¼ 4

ðahxÞ2ðahyÞ2
Z ah

0

Z ah

0
ðahx � sxÞðahy � syÞ

� exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sx

hx

� �2

þ 2sy

hy

� �2
s0

@
1
Adsxdsy ð14Þ

It is possible to determine the mean value and standard devia-
tion of the bearing capacity by generating repeatedly different rea-
lisations of both random fields and carrying out a bearing capacity



Table 3
Deterministic values for the mean parameters.

qf (kPa) qFEM (kPa)

[1] Weightless cohesive soil, not embedded 538.50 528.49
[2] Self-weight cohesive soil, not embedded 575.84 572.78
[3] Weightless cohesive soil, embedded 660.09 647.99
[4] Self-weight cohesive soil, embedded 697.43 694.88

Fig. 4. Isotropic mean value for different computational cases: [1] surface
foundation on a weightless soil, [2] surface foundation on a self-weight soil, [3]
embedded footing on a weightless soil, and [4] embedded footing on a self-weight
soil.

Fig. 5. Standard deviation of the bearing capacity for the isotropic task: [1] shallow
foundation on a weightless soil, [2] shallow foundation on a self-weight soil, [3]
embedded footing on weightless soil, and [4] embedded footing on a self-weight
soil.
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estimation each time. However, the number of realisations in the
simulation process must be selected to obtain stable bearing
capacity statistics. As a result of several realisations for different
initial pseudo-random numbers (seed), a stable mean value (with
the probability of deviation less than 5%) was achieved using 300
realisations. The speed of the convergence is presented in Fig. 3.

3. Numerical analyses

The computer code that performs calculations using the deter-
ministic FEM was calibrated so that the obtained results yielded
similar values as the bearing capacity estimates from the analytical
method (qf), i.e., according to Eq. (1). The values of qf have been cal-
culated using Nc, given by Eq. (15):

Nc ¼ 2 expðp tan /0Þtan2 p
4
þ /0

2

� �
� 1

� �
tan /0 ð15Þ

Table 3 presents the results obtained for the situation shown in
Fig. 3 with the soil parameters equal to the mean values in
Table 2. The values of qf were compared to the finite element
computations (qFEM) for the mean strength soil parameters. The
FEM computations were performed for the mesh shown in Fig. 1,
under the assumption the width of the foundation B = 1 m. The
values of qFEM are similar in each of these cases.

3.1. Isotropic case

The random soil resistance that was estimated under the
assumption that the random fields of the strength parameters
(cohesion and internal friction angle) are isotropic (hx = hy = h)
was analysed. Fig. 4 presents the expected value of the bearing
capacity as a function of the fluctuation scale (h) standardised by
the width of the foundation (B). Compared to the values given in
Table 3, the results in Fig. 4 suggest that the expected value is
lower than the deterministic value (qult). Within the range of the
scales of fluctuation considered, the curves for all four cases have
almost the same character (they are almost ‘‘parallel’’).

Local minima of the mean value with scales of fluctuations
similar to the foundation width are observed in the various curves;
this result is consistent with the observations of Griffiths and
Fenton [15].

Fig. 5 shows the standard deviation of the random resistance. As
with the mean value, the graph shows the dependence of the stan-
dard deviation on the normalised fluctuation scale. There is nearly
a fourfold increase in the standard deviation of the resistance
across the range of the analysed scales of fluctuations. The maxi-
mum increase is for the case of an embedded footing placed on a
self-weight soil.

Considering the assessment of the random variability of the bear-
ing capacity, the behaviour of the bearing capacity coefficient of
variation (COVqf), which is defined as the ratio of the standard devia-
tion to the mean value of bearing capacity, can be calculated as

COVqf ¼
rqf

lqf

ð16Þ

The dependence of the coefficient of variation on the fluctuation
scale normalised by the width of a foundation is presented in Fig. 6.

The coefficient of variation had an increasing trend in all cases.
The largest variation was observed in the case of the surface foun-
dation placed on a weightless cohesive soil [1], which increased by
nearly fivefold over the range of scales of fluctuations considered.
Considering the weight of the soil [2], the change of COVqf is mini-
mal. The coefficient of variation behaves differently for the case of
the embedded footing. The reduction of the variation of resistance
due to the embedment of the foundation (the two lines at the
bottom of the Fig. 6) can be seen. With the increase of the scale
of fluctuation, the damping increases to nearly 20% when h/B = 2.
3.2. Anisotropic case

Soil properties are often more variable in the vertical direction
than in the horizontal direction due to the sedimentary deposi-
tional processes. This phenomenon has been considered by
Cherubini [7], who noted that the horizontal scale of fluctuation
may be at least ten times the vertical scale. Therefore, an extended
algorithm was used to analyse the impact of the anisotropic nature
of random fields on the bearing capacity of soil. Only the vertical



Fig. 6. Bearing capacity coefficient of the variation of soil for the isotropic task: [1]
shallow foundation on a weightless soil, [2] shallow foundation on a self-weight
soil, [3] embedded footing on a weightless soil, and [4] embedded footing on a self-
weight soil.

Fig. 8. Coefficient of variation and limit bearing capacity of resistance for four
cases: [1] shallow foundation on a weightless soil, [2] shallow foundation on a self-
weight soil, [3] embedded footing in a weightless soil, and [4] embedded footing in
a self-weight soil.

Fig. 9. Comparison of the mean value for the isotropic and anisotropic cases.
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scales were statistically determined by Cafaro et al. [5], as shown in
Table 1; thus, in the present work, the horizontal scales in the
range of 0.2–50 m were included in the parametric studies.

Fig. 7(a) shows the 3D surface of the average bearing capacity
for the case of a footing embedded in self-weight soil. Fig. 7(b)
shows the cross section of the surface for different hx/B values.
Other cases provided a similar trend and are not shown here.

The cross-sections indicate the local minima for the horizontal
scale of fluctuation, which occurs close to the width of the adopted
foundation (hx/B = 1). The mean value increases with an increase in
the horizontal scale. The trend of the bearing capacity coefficient of
variation (Fig. 8) levels out as hx/B increases. The coefficient of
variation decreases in the case of an embedded footing but differs
only slightly when including a self-weight soil. These observations
are analogous to those observed in the isotropic case (Fig. 6).

A summary of the mean value for the anisotropic and isotropic
cases (Fig. 9) indicates that the bearing capacity increases for val-
ues of horizontal scale of fluctuations that are larger than the width
of the foundation. This increase is significantly smaller in the ani-
sotropic case. The high values of the vertical scale (hy) are not likely
in natural soils. Thus, the isotropic case may overestimate the
Fig. 7. Mean value of the bearing capacity for the anisotropic case: (a) the 3D surface; (b) the cross section of the surface for different hx/B values.
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mean value of the bearing capacity (unconservative). In the
anisotropic case, the vertical fluctuation scale was held constant
at hy/B = 1.

Analysing the coefficient of variation (Fig. 10), the anisotropic
case yields a larger value for the coefficient of variation compared
with the equivalent isotropic case. Thus, the isotropic case may
Fig. 10. Comparison of the bearing capacity coefficient of variation for the isotropic
and anisotropic cases.

Table 4
Statistical values of the limit bearing capacity (anisotropic model,
embedded footing, self-weight soil, B = 1 m, hx = 30 m and
hy = 0.7 m).

Median 513 kPa
Arithmetic mean 520.7 kPa
Geometric mean 509.5 kPa
Variance 11689 (kPa)2

Stand. deviation 108.1 kPa
Coef. of variation 0.2076 (–)
Third moment 5.31E+05 (kPa)3

Stand. skewness 0.4204 (–)
Fourth moment 4.43E + 08 (kPa)4

Stand. kurtosis 3.243 (–)

Valid ob

Lognormal distribu�on

Probability

Fig. 11. Comparison of the cumulative distribution function from the RFEM with the
and hy = 0.7 m).
underestimate the coefficient of variation of the bearing capacity,
which can lead to unsafe values of reliability measures.

3.3. Probability distributions of a random soil bearing capacity

Values obtained as a result of the numerical analysis (RFEM)
allowed for the estimation of the probability distribution of the
bearing capacity. Here, the case of a footing embedded in a self-
weight soil is analysed. Simulations were performed using 2000
realisations permitted the determination of stable values of high-
order statistical moments. The case considered was for B = 1 m,
hx = 30 m and hy = 0.7 m. Statistical parameters for the sample are
summarised in Table 4.

A histogram was plotted from the 2000 realisations to deter-
mine the ‘‘best-fit’’ probability density function for the bearing
capacity. As shown in Figs. 11 and 12, a lognormal fit was found
to be a good model for the computed bearing capacity values.

In addition to the graphical goodness of fit, statistical tests were
performed for the studied sample; these tests provided no basis to
reject the lognormal distribution hypothesis. The results are pre-
sented in Table 5.

3.4. Application to reliability tasks

This manuscript presents only one of the cases of estimating the
probability distribution (an anisotropic model, embedded footing,
and self-weight soil). The same analysis was carried out for all of
the studied computational cases (see Table 3). In all cases, lognor-
mal fits were acceptable. The results were clear and are thus not
included in this paper.

Results from the RFEM analysis of the bearing capacity of a shal-
low foundation enable the use of probability theory to analyse the
reliability of a foundation. The estimated and tested probability
distribution can be used to determine the probability of failure
(pf) or the reliability index (b).

pf ¼ Pfqf 6 qdg ¼ Uð�bÞ ð17Þ

where qf is the random bearing capacity of the soil, which was
obtained from analysis using the RFEM method, qd is the design
value of the bearing capacity, and U is the cumulative distribution
function of the standard normal. Failure is defined as occurring
when the bearing capacity is smaller than the design value.

Taking the logarithms of both sides of the inequality in the
parentheses of Eq. (17) yielded the following:
serva�ons

theoretical distribution function for a lognormal distribution (B = 1 m, hx = 30 m



Fig. 12. Comparison of the histogram from the RFEM with the theoretical density function for a lognormal distribution (B = 1 m, hx = 30 m and hy = 0.7 m).

Table 5
Parameter estimation results obtained from the statistical tests of compliance
(anisotropic model, embedded footing, and self-weight soil).

Parameter estimation

Selected estimation method Method of moments Least square method

Selected stochastic model Lognormal
Parameter 1 – llnX 6.234 6.234
Parameter 2 – rlnX 0.2055 0.2107

Testing
Selected testing method Kolmogorov–Smirnov test
Significance level 0.4768 0.4842
Critical significance level 0.05 0.05

The hypothesis should not be rejected

Selected testing method Chi-square distribution test
Number of classes used in test 44 44
Significance level 0.3382 0.3728
Critical significance level 0.05 0.05

The hypothesis should not be rejected
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pf ¼ Pfln qf � ln qdg ¼ P
ln qf � lln qf

rln qf

6

ln qd � lln qf

rln qf

( )

¼ U
ln qd � lln qf

rln qf

 !
ð18Þ

ln qd � lln qf

rln qf

¼ �b ð19Þ
Fig. 13. Design value of the bearing capacity
where lln qf
is the mean value of the underlying normal distribution

in relation to the lognormal distribution of bearing capacity, qf (9),
and rln qf

is the standard deviation of the underlying normal dis-
tribution (10). From Eq. (19), the design value of the bearing capac-
ity can be determined as

ln qd ¼ lln qf
� brln qf

qd ¼ exp lln qf
� brln qf

n o ð20Þ

Eq. (20) allows for the determination of the design value of the
bearing capacity. The factor of safety can be defined as

FS ¼
lqf

qd
ð21Þ

where lqf is the expected value of the bearing capacity resulting
from the RFEM computations.

Figs. 13 and 14 present the dependence of the design value of
bearing capacity and the factor of safety (defined by Eq. (21) for
the reliability index b), respectively. In these figures, the vertical
scale of fluctuation was fixed at hy/B = 1, and several different val-
ues of the horizontal scale of hx/B were considered.

Fig. 13 illustrates that the design value of the bearing capacity
decreases as the index b is increased. However, the value of the fac-
tor of safety increases (Fig. 14). Individual values stabilise with an
increase in the horizontal scale of fluctuation of hx/B. The result is
evident when the scale of fluctuation is larger than 5.
for different b and hx/B values (hy/B = 1).



Fig. 14. Factor of safety for the resistance depending on the b indicator for hy/B = 1 and different hx/B values.
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The presented design value can be the starting point for the
calibration of safety factors with the use of any method, such as
the global factor or the method of partial coefficients for the entire
resistance, which is promoted by European standards [17]. Fig. 14
provides examples of the calibration of the partial safety factor of
resistance.

4. Concluding remarks

This paper describes an extension to existing work to include
the impact of embedment and soil self-weight on the bearing
capacity of a footing on random soil. The existing RFEM code
[11] was modified and extended to capture the above mentioned
factors.

Two main conclusions can be summarised as follows:

(1) The coefficient of variation of the bearing capacity is reduced
by the influence of embedment but is not reduced by the
inclusion of self-weight.

(2) Including anisotropy decreases the mean and increases the
variance of the bearing capacity compared to the isotropic
case. Both of these factors suggest that the isotropic case
may lead to unsafe estimates of reliability.

For the cases considered, a lognormal distribution for the bear-
ing capacity was observed from the RFEM results. The lognormal
distribution may be dominated by the cohesion field, which also
has a lognormal distribution and is linearly related to the bearing
capacity. Provided that the coefficient of variation of the cohesion,
c, is significantly greater than the coefficient of variation of the fric-
tion angle, /, the distribution of the bearing capacity, qf, may fol-
low that of the cohesion distribution.

Calibration of the factor of safety showed that the design
value of the bearing capacity and the design values of safety
factors stabilise for a horizontal scale greater than or equal to hx/
B = 10.

Future studies may also include further modifications to the
RFEM code such as including more sophisticated soil models, pore
pressures and consideration of 3D.
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