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INTRODUCTION
A changing global economic and geopolitical climate

has intensified exploration for unconventional resources
such as seafloor mineral deposits in deep water. Whereas
offshore diamond, tin, phosphate, iron sand, and gold proj-
ects—ranging from the exploration to the exploitation
phase—are well established, marine mineral resources in
deep water require assessment for potential exploitation.
These deposits are located in active mineralization sites
near tectonic plate boundaries, and are in the form of 
metalliferous sediments, seafloor massive sulphides, man-
ganese nodules, manganese crust, and gas hydrates.

Field sampling programs are required to collect data to
build deposit models outlining the spatial distribution of
geotechnical and resource parameters; however, the sample
coverage of marine exploration programs is limited by high
capital and the operating and maintenance costs of diving
support vessels and remotely operated vehicles. Addition-
ally, data reliability is compromised by remote locations
and the technical difficulties associated with sample collec-
tion in deep marine environments (van de Ketterij, 2010).

The sparsity of data to evaluate deep marine deposits leads
to a high degree of uncertainty for block predictions. At most,
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conventional modelling techniques (e.g., ordinary kriging,
inverse distance weighting) can indicate how well a given
algorithm is performing (Caers, 2011) and they tend to
smooth the spatial variability inherent to the deposit. The spa-
tial variability can have a significant impact on downstream
processing steps (i.e., the necessity of blending grades to sta-
bilize the feed of the processing plant) and thus on the final
realized value (Goovaerts, 1997; Vann et al., 2012; Benndorf,
2013; Benndorf & Dimitrakopoulos, 2013).

To minimize smoothing effects, geostatistical simulation
techniques produce 20–100 possible deposit realizations,
each of which emulates the spatial variability (variability
within a realization) and attribute uncertainty (variability
among realizations). Because decision-making is generally
based on a block scale, realizations are often simulated on the
selective mining unit (SMU) scale. Accurate quantification
and propagation of deposit variability protects strategic
investments and creates an operation that performs closer to
its potential (Dimitrakopoulos, Farrelly, & Godoy, 2002), a
statement that also applies to onshore operations.

This paper introduces an alternative algorithm to existing
block simulation methods (e.g., generalized sequential Gauss-
ian simulation; Dimitrakopoulos & Luo, 2004) to simulate the
block properties of a deposit model. The local average subdi-
vision (LAS) method comprises a sequence of calculation
stages, during which a cell is subdivided into four (2D) or
eight (3D) equal-sized cells, a process repeated to obtain
increasingly smaller cell sizes. The final value of each simu-
lated cell (SMU) represents the local average of the modelled
property over the area/volume delineated by the cell. The pro-
posed simulation method is part of a general framework that
is systematic and robust. Accompanying validation guidelines
help reduce the likelihood of costly mistakes and ensure that
simulation results are representative.

once developed, code can be used to generate an entire
collection of block realizations, each with the correct spatial
variability. Ultimately, the entire set of realizations is propa-
gated through transfer functions to integrate the deposit vari-
ability into financial or technical project risk. Two synthetic
case studies illustrate the application of a probabilistic evalu-
ation approach. The first demonstrates the economic perform-
ance of ore/waste classification decisions made after
integrating block model uncertainty with the particular cost
structure of an underwater operation. The second case study
illustrates how the uncertainty of geotechnical parameters can
be translated into performance indicators, thereby enabling
better selection of seafloor excavation equipment.

LAS TO CHARACTERIZE SPATIAL
VARIABILITY AND BLOCK MODEL
UNCERTAINTY

Necessity of geostatistical simulations
Geostatistical estimation theory includes a set of algo-

rithms to calculate the “best” estimate at a single location,

with the objective of providing an estimate as close as possi-
ble to the true but unknown grade at a specific SMU. The
quality of each estimate is measured independently of neigh-
bouring estimates, in terms of unbiasedness (average differ-
ence between the expected value of the estimator and the true
value) and error variance (Journel & Huijbregts, 1978). The
best estimator refers to a linear estimate that minimizes the
error variance (i.e., kriging).

A deposit model of such best estimates, however, might not
represent the best theoretical or practical model. In general,
minimizing the estimation variance tends to smooth out the
natural spatial variability inherent in the deposit (Figure 1). In
other words, the estimated values of two neighbouring points
tend to be more similar than what is observed in nature. Typi-
cally, small values are overestimated, whereas large values are
underestimated (extreme values are filtered and the variation is
reduced). Another drawback related to this smoothing effect is
that the degree of spatial variability is inversely related to sam-
ple spacing (Webster & oliver, 2004). The larger the kriging
variance on average, the more variance is lost. on the other
hand, the simulation approach generates a more realistic rep-
resentation of the in-situ variability (compare Figure 1a, d).
Note that the volume of the estimation, simulation, and data
points is the same in the example shown in Figure 1.

Problems associated with geostatistical estimation are not
only caused by its inability to represent the correct spatial
variability, but also by the generation of only a single esti-
mated orebody model, which inevitably leads to incorrect
decisions (Dimitrakopoulos, 1998; Savage, 2003; Martinez,
2009). These incorrect decisions might result from Jensen’s
inequality, which states that because the value of a project, v,
is an unknown and therefore a random variable, and the
option value of the project, OV, is a convex function, then
OV(E[v]) ≠ E[OV(v)]. In other words, average input does not
always yield average output when dealing with uncertainty
and nonlinear transfer functions. This flaw of averages fur-
ther justifies the use of simulated orebody models.

Local average theory and change of support
Model application should guide the choice of method to

simulate a given orebody. For industrial scale applications,
computationally efficient methods have been developed
and successfully applied on a point scale (e.g., Benndorf &
Dimitrakopoulos, 2007). For mine planning and scheduling
applications, decisions are generally made on a block scale.
An appropriate choice, therefore, is a computationally effi-
cient simulation method, which directly generates realiza-
tions on a scale of interest related to the SMU.

The selected simulation technique consists of a simula-
tion phase and a conditioning phase. During the simulation
phase, an unconditioned random field is generated by LAS,
at a resolution consistent with the desired SMU scale (Fen-
ton & Vanmarcke, 1990). During a sequence of calculation
stages, each cell is subdivided into four equal-sized cells
(Figure 2), a process that is repeated to further reduce the



basis of large truckloads. The mixing of high- and low-grade
values in large volumes results in less variable average values
(Isaaks & Srivastava, 1989). Changes in the support effect can
be described by a variance reduction formula or computed
based on a Gaussian quadrature approximation (Press,
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cell size. The final value of each simulated pixel represents
the local average of the modelled property. This focusing
operation eventually results in a picture (realization) of the
random process, whose statistics are consistent with the
desired field resolution. During the conditioning phase, a
conditioning operation is performed to ensure that each
simulated random field honours the locations of rich and
poor zones, as observed at the sampling location.

In mining geostatistics, the “support” of the sample is the
volume to be estimated/simulated, with its particular size,
shape, and orientation. It is important to note that the sam-
pling size has a considerable influence on the distribution of
the values obtained in a simulation, in particular, the variance.
For example, attributes measured on rock-chip–sized samples
can be highly variable relative to attributes obtained on the

Figure 2. Resolution improvement during an LAS simulation of a local
average random process. The initial coarse resolution of a generated
random field is improved through a sequence of refinement stages, during
which cell sizes get smaller and smaller.

Figure 1. Estimated and simulated metal concentrations, based on the Walker Lake dataset (Isaaks & Srivastava, 1989): a) known field concentration; 
b) sampled field concentration; c) estimated 1 m × 1 m block concentration; d) simulated 1 m × 1 m block concentration
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Teukolsky, Vetterling, & Flannery, 2007). A detailed study
of the underlying mathematics reveals that averaging not
only reduces variance, but also smoothes results. The
amount of variance reduction is proportional to the short-
range variability of the attribute under consideration; how-
ever, the mean of a local average remains constant with a
change of support (Fenton & Griffiths, 2008).

The LAS method explicitly models this important
change of support effect. This advantage strongly differs
from some conventional methods that implicitly model the
change of support by reblocking point simulations (averag-
ing point values inside a given block).

Two-dimensional LAS
The local average theory can extend the simulation prin-

ciples introduced in Figure 2 to formulate a simulation
technique. Mathematical details of the simulation method
can be found in Fenton and Vanmarcke (1990). Briefly, in
two dimensions, the subdivision procedure described above
continues until the desired field resolution is obtained. Fig-
ure 3 illustrates a parent cell, Z i

5, subdivided into four child
cells Z i+1

j , j = 1,2,3,4. Although all parent cells undergo
subdivision, to retain simplicity only one example is
shown. Single element notation results in a cluttered collec-
tion of equations; therefore, a vector-matrix notation is
used. The four child variables of parent cell Z i

5 are stored in
one column vector, Z i+1 = {Zi+1

1 , Zi+1
2 , Zi+1

3 , Zi+1
4 }; the nine

conditioning parent values are stored in another column
vector, Z i = {Z i

1, …, Z i
9}.

The unknown local averages of the four child cells are
subsequently modelled as normally distributed random

variables, with a mean and variance selected to satisfy the
following criteria:
• The four local variables average to the parent value, so

the global average remains constant throughout the
sequence of subdivisions.

• The four local variables show a correct variance accord-
ing to the local average theory.

• The four local variables are properly correlated with one
another, according to the child-child covariance relations
calculated based on Gaussian quadrature approximation.

• The four local variables are properly correlated with the
neighbouring child values across the parent boundaries,
according to the child-parent covariance relations calcu-
lated based on Gaussian quadrature approximation.

Conditioning of the random field
The following formula is used to perform conditioning

calculations:

                        Zc(x) = Zu(x) + [Zk(x) − Zs(x)]                      (1)

where Zc(x) represents the conditioned field, Zu(x) is an
unconditional simulation, Zk(x) denotes the block kriging esti-
mate based on known measured values at the sampling loca-
tion, and Zs(x) denotes the block kriging estimate based on the
unconditional simulated values at the sampling location.

New integrated framework for producing reliable
results

To increase the applicability of the proposed simulation
technique, a solution was developed to overcome two model
constraints: the data must be normally distributed, and a data
support must be similar to the pixel size of the simulated
images. Moreover, the proposed solution is integrated in a gen-
eral simulation procedure that is systematic, robust, and easy
to follow. This procedure can reduce the possibility of costly
mistakes and help to ensure the validity and representativeness
of the simulation results (Nowak & Verly, 2004). The LAS
simulation technique described above is the core of the
process. other steps needed to complete the geostatistical
analysis constitute three main types of components (Figure 4):
• Main operations (seven steps) are numbered and located

in a vertical sequential path.
• Data and area statistics boxes (six steps) are indicated by

a capital letter, and include the same set of tools used to
summarize the results of the operations in global and
spatial statistics.

• Validation procedures (two steps) are indicated by dia-
monds; they control and safeguard the representative-
ness of the simulation results.
The support and projection spaces (blue ovals) change

during analysis.

Main operations Seven main operations constitute the
spine of the simulation framework (refer to Figure 4):

Figure 3. Cell subdivision in a two-dimensional LAS procedure. Arrows
between the coloured squares represent three types of block-to-block
covariance that need to be calculated (after Fenton & Vanmarcke, 1990);
Z is the variable to be estimated. In the LAS procedure, all cells are
subdivided as shown for the central cell Z i

5.
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1. A declustering algorithm removes the bias associated
with preferential sampling and makes the data more spa-
tially representative of the area or volume under investi-
gation. The input for the algorithm is the original scale
point values; the output is original scale point values and
the declustering weights.

2. Normal score transformation removes the normal distri-
bution constraint on the original data. The input is the
original scale point values and the declustering weights;
the output is normal score (NS) point values.

3. Using a model covariance function, a theoretical model
is fitted to the computed experimental covariances of the
NS values. The input is the NS point values; the output
is the analytical covariance function.

4. The data support adjustment is an affine correction that
overcomes the constraint that the support of the data must
approximate the pixel size of the simulated images. The
input is NS point values; the output is NS block values.

5. orebody simulation generates equally probable repre-
sentations of the in-situ orebody variability from a 

Figure 4. Flowchart of the LAS simulation process. Seven main operations are numbered and located in a vertical sequential path. Note that the support
and projection spaces (blue ovals) change during the analysis. The internal part of the simulation framework, which operates in the normal score
domain, is indicated by thick lined boxes. Validation procedures (diamonds) depend on calculating summary statistics to approve simulation results.
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combination of random field simulation and condition-
ing. The input is NS block values (conditioning data);
the output is simulated NS block values.

6. Back transformation is responsible for representing the
orebody models in the original data space. The input is
simulated NS block values; the output is simulated orig-
inal scale block values (operation in sequential path), or
the input is NS block values and the output is original
scale block values (box connected with data support
adjustment operation).

7. Transfer functions are economical and technical transfer
functions that translate the simulated geological and
geotechnical models into financial and operational per-
formance indicators. The input is original scale simulated
block values and the output is performance indicators.

Data and area statistics The inference process embed-
ded in each data and area statistics box (Figure 4) estimates
the same relevant summary statistics for each inserted col-
lection of data values. Each box contains the same set of
tools to compare the outcomes of relevant operations. As
the name suggests, data and area statistics can be subdi-
vided into global and spatial (area) statistics groups.

Global statistics characterizing general data properties
are computed using formulas for the following conven-
tional statistical measures: mean, standard deviation,
interquantile range, frequency, and cumulative distribution.
The conventional formulas are adjusted to correct for the
bias introduced by preferential sampling. For example, the
mean is calculated with variable declustering weights that
give more importance to isolated locations. Spatial statis-
tics estimate spatial correlation structures inherent within
the area under investigation, frequently using variograms,
covariance, and correlation functions. The lag mean, lag
variance, and moving window statistics are also calculated.

Validation procedures The embedded validation proce-
dures safeguard the quality and representativeness of the
simulation results. Without a validation procedure, even the
most sophisticated technique can yield unreliable results.
The proposed practical process contains two main valida-
tion steps (upper and lower diamonds in Figure 4):
• The first validation step checks the simulation results in

the NS domain and approves them if their frequency dis-
tribution, cumulative distribution, and variograms match
the conditioning NS block values. If the validation statis-
tics do not match, the entire set of realizations is rejected
and the simulation is repeated with adjusted parameters.

• The second validation procedure tests the complete set of
geostatistical simulation results by checking if the final
simulation results (after back transformation) reproduce the
global and spatial statistics of the conditioning block data.
This double validation procedure was designed to help

detect where the calibration parameters (e.g., range, nugget,
and sill of the variogram model, neighbourhood size) must
be adjusted in the practical process. A full description of the
proposed practical process is described by Wambeke (2013).

QUANTIFYING BLOCK MODEL
UNCERTAINTY AT THE OCEAN FLOOR TO
IMPROVE DECISION-MAKING

Concept of the transfer function
To identify the (financial) project risk or to optimize the

design of deep-sea extraction equipment, the block model
uncertainty must be propagated through the complete
value chain. Thus, the derived spatial distributions (spatial
stochastic models) have to be inserted into physical mod-
els, which translate the block parameters (e.g., uniaxial
compressive strength [UCS], Brazilian tensile strength
[BTS], and friction angle) into financial or operational 

Figure 5. Conceptualization of the added value of the combination between geostatistical simulations and transfer functions. To identify the (financial)
project risk or to optimize the design of deep-sea extraction equipment, it is necessary to propagate the characterized block model uncertainty through
the complete chain. The spatial distributions of geotechnical parameters (spatial stochastic models) are inserted into physical models to translate them
into operational performance indicators (e.g., cutting forces and power requirements).
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performance indicators (Figure 5). These models—so-
called utility or transfer functions (Dimitrakopoulos,
1998)—can be used to calculate indicators such as the cut-
ting force, power requirement, bearing capacity, cash flow,
grade tonnage curve, or net present value (NPV).

To further assist the decision-making process, the likeli-
hood and corresponding (economic) consequences of differ-
ent scenarios can be compared and evaluated. often the
entire analysis can be summarized, through a decision or
forecast model, into a single monetary value that estimates
the expected profit, loss, or cost associated with each sce-
nario. Typically, the scenario that maximizes the monetary
value of the mining project is preferred for implementation.
The main advantage of this simulation framework is that the
spatial variability and uncertainty is propagated through the
entire equipment design and mine-planning process. Conse-
quently, the complete procedure results in a “risk-robust”
decision that adds value to the project (e.g., Figure 5).

Economic evaluation of a synthetic marine gold
deposit

A case study illustrates how the economic value of a marine
gold mining operation can be significantly improved by con-
sidering block model uncertainty during the planning phase.
For each excavated block, the production engineer must
decide whether to classify the mined material as ore or waste.
Because the economic consequence of misclassifying a block
of ore as waste might result in a significant loss, and misclas-
sifying a block of waste as ore might result in a manageable
additional cost, it is prudent to implement a risk-based selec-
tion strategy to minimize classification errors. Thus, decisions
are made by comparing the expected economic consequences
of both classification scenarios. The proposed strategy is more

capable of exploiting the full potential of each single block.
The risk-based selection strategy will be benchmarked against
the conventional cut-off grade approach.

An economic model of a deep-sea mining operation con-
siders three main cost components: excavation, transporta-
tion, and processing. The costs used here are very rough
estimates based on a technical report by Nautilus Minerals
(Lipton, 2012). The excavation cost (US$15/t) is consid-
ered to be the same for waste and ore; however, transporta-
tion costs might differ substantially. Waste must be pumped
horizontally, possibly over a large distance of the ocean
floor, to a disposal area (US$10/t). ore, on the other hand,
must be pumped horizontally to the vertical riser assembly,
lifted to the surface, transported by barge to the shore, and
then transported to the processing plant (US$30/t). Process-
ing costs are considered only for ore (US$55/t).

To illustrate the effectiveness of the risk-based selection
strategy, the case study was carried out using data from a
completely known area. A dataset containing 470 samples
was originally derived from a satellite image depicting sur-
face elevation around Walker Lake (Isaaks & Srivastava,
1989). Data were modified to represent a horizontal 1 m
thick rich top layer of a larger deposit on the ocean floor.
After declustering, the distribution remained positively
skewed with the following statistics: mean gold grade =
2.9 g/t; median gold grade = 2.8 g/t; standard deviation =
2 g/t; minimum gold grade = 0 g/t; maximum gold grade =
10.2 g/t. The average density of the material was 2.7 t/m3.

The 1 m thick slab of the deposit was subsequently 
subdivided into 288 16 × 16 m2 blocks with a unit thickness
(one realization shown in Figure 6a). To keep the case study
simple, one can assume that every block in the investigated
layer will be excavated row by row, starting from the lower

           

Figure 6. Preliminary planning of a gold mining operation: a) simulated gold concentrations; b) planned extraction sequence during the fifth mining
period shown in the grey row
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left corner and ending in the upper right (Figure 6b). one
row containing 16 blocks will be completely mined during
a single mining period. The displayed area will be mined
over a total of 18 periods.

Before excavation, blocks need to be classified as either ore
or waste (this is generally known well ahead of excavation):
• Scenario 1: Mined block is classified as waste and trans-

ported to the waste dump at the ocean floor. Costs
include excavation (US$15/t), horizontal transportation,
and disposal (US$10/t).

• Scenario 2: Mined material is classified as ore, pumped
to the surface by means of a vertical riser, transported by
barge to the shore, and treated in a processing plant.
Costs include excavation (US$15/t), transportation
(US$30/t), and processing (US$55/t).
A mined block typically moves through the second logis-

tical scenario if the price of the estimated recovered metal
exceeds the sum of the mining, transportation, and processing
costs. This minimum amount of metal required is generally
linked with the economic cut-off grade, which is calculated as

                                           15 + 30 + 55                            zcut-off = ––––––––––––                             (2)                                                   p.r

where p is the metal price (US$53/g) and r is the percentage
of contained metal that can subsequently be recovered
(95%). Traditionally, the cut-off grade (2 g/t) is compared
with estimated block grades to classify the mined material.
Applying conventional classification to one estimated block
model, 113 blocks are classified as ore (grey) because their
estimated grade exceeds the cut-off grade (Figure 7a).

This conventional classification strategy, however, does
not account for uncertainty and risk. Given simulated 

probability distributions, the expected profit associated with
each economic scenario of classification can be assessed and
used to derive an economically optimal ore selection
(Glacken, 1996). The expected “profit” of classifying a block
as waste is given by

                    E[Prwaste] = − Cm − Po [p.r.m+ − Cp]                 (3)

where Po is the probability that the true grade of the block
exceeds the cut-off grade, m+ is the mean grade if the block is
classified as ore, and [p.r.m+ − Cp] is the lost opportunity cost.
The formula indicates that mining costs must be paid and a pos-
sible loss is associated with the disposal of profitable material.

The expected profit of sending a block to the processing
plant is

   E[Prore] = − Cm + Po [p.r.m+ − Cp] + Pw [p.r.m− − Cp]     (4)

where Pw is the probability that the true grade of the block
is lower than the cut-off grade, m− is the mean grade if the
block is classified as waste, [p.r.m+ − Cp] is the possible
profit if the classification is correct, and [p.r.m− − Cp] is a
possible additional cost if the classification is incorrect.
Finally, a block is selected as ore if the expected profit for
classifying it as such is greater than the expected profit of
classifying it as waste. The risk-based selection strategy
results in a much greater volume of ore (166 blocks, Fig-
ure 7b) than the conventional selection protocol (113
blocks, Figure 7a). Probabilities and expected profits were
calculated from 100 simulated deposit realizations.

A cash flow analysis was then computed using the
same mining sequence (1 row = 1 mining period). Assum-
ing a discount rate of 5%, the cash flow can ultimately be

Figure 7. Improved decision making under the face of block model uncertainty for a) conventional ore/waste selection based on the estimated block
grades and b) risk-based selection based on simulated probability distribution; grey = ore, white = waste
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summarized as NPV. Figure 8 compares the real (possible
because the case study is based on an area that is completely
known) and predicted economic performance of the conven-
tional and risk-based ore/waste classification strategies from
Figure 7. The economic performance of the conventional
and risk-based classification strategies are depicted by green
and purple bars, respectively, in Figure 8. The predicted per-
formance of the conventional classification strategy applied
to the estimated block model is depicted by the red bar in
Figure 8. The predicted performance of the risk-based clas-
sification strategy applied to each individual simulation (for
a total of 100) is depicted by the grey bars in Figure 8.
Besides a most expected NPV, the simulation approach
yields an indication of the uncertainty of the entire project
value. This uncertainty is a direct consequence of the limited
amount of information available (470 data points).

The case study shows that a risk-based selection strategy
can increase the project NPV from $8.4 million to $10.4 mil-
lion (25%). Further research needs to be carried out to better
understand the impact of a change in cut-off grade and other
economic parameters on the final decision and the corre-
sponding change in NPV.

Propagation of block model uncertainty into
performance indicators relevant for equipment
selection

The second synthetic case study illustrates how a simula-
tion-based geostatistical analysis can be used to support deci-
sions regarding equipment selection. Assume that a decision
needs to be made regarding the size and installed power of a
deep-sea crawler with a drum cutter. The strength of the rock
can significantly limit the amount of material that can be
excavated, depending on the equipment. The case study illus-
trates how a collection of technical transfer functions is used
to transform an array of rock-strength parameters into oper-
ational performance indicators. Evans and Pomeroy (1996)
explained how to calculate the required forces on the cutting

teeth and how to translate these forces into energy and
required cutting power. A total of 73,728 1 m2 blocks with a
unit thickness were simulated in an area of 288 × 256 m2.
The analysis is performed as follows:
1. A geostatistical simulation is performed to assess and

characterize the spatial variability and block model uncer-
tainty in rock strength (BTS). The BTS of the rock ranges
from 0.5 to 3.2 MPa.

2. The simulated deposit models are inserted into the Evans
and Pomeroy cutting formulas to calculate the forces
required to excavate the material. The required cutting
forces range from 0.70 to 4.41 kN (Evans & Pomeroy,
1996).

3. A second transfer function computes the specific energy
requirement (based on the previously obtained cutting
forces) or the amount of energy needed to cut 1 m3 of
rock. The specific energies range from 417 to 2,635 kJ
(Evans & Pomeroy, 1996).

4. Considering a desired production rate of 600 m3/h, a third
and final transfer function can be used to compute the
required cutting power. The final calculated values vary
between 69.43 and 437.71 kW (Evans & Pomeroy, 1996).
Because the collection of technical transfer functions is

evaluated over the entire set of simulated realizations, uncer-
tainty is automatically propagated through the calculations
(i.e., the collection of transfer functions is evaluated over
each individual realization); therefore, each cubic metre of
material is connected with a specific distribution of required
cutting power, with the width of each distribution represent-
ing the inherent uncertainty.

To optimize equipment selection and identify areas for
additional drilling, the workability is compared among exca-
vation equipment with an installed power of 200, 300, or
350 kW. Because each cubic metre is characterized by its own
distribution of required cutting power, it is possible to calcu-
late the probability that a tool with a given installed power is
able to cut the rock. Probabilities were calculated from 

           

Figure 8. The net present value (NPV) of the investigated part of the gold mining project. The results from a risk-based ore/waste selection strategy are
compared with those of a conventional selection strategy. Note that the risk-based selection strategy resulted in a much greater volume of ore (166
blocks) than the conventional selection protocol (113 blocks).
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100 deposit realizations. To facilitate comparison, the calcu-
lated probabilities are divided into three categories (Figure 9):
• Event 1: Grey cells indicate regions with a greater than

80% chance of the required cutting power being below the
limit of the selected mining tool. There is a high probabil-
ity that the excavation equipment is able to cut the rock.

• Event 2: orange cells indicate regions with a greater than
80% chance of the required cutting power exceeding the
limit of the selected mining tool. During mining opera-
tions, cutting in these regions could be associated with
low production rates, high wear, high maintenance
requirements, or even breakdown.

• Event 3: Purple cells correspond to the intermediate sce-
nario. Due to local uncertainty, it is difficult to make reli-
able statements regarding the cuttability of the rock with
respect to the selected mining tool. Purple cells indicate
locations where additional investigations would likely
provide valuable information.
only approximately 25% of the area can likely be exca-

vated efficiently with the 200 kW excavation equipment
(Figure 9a), whereas this value can be increased to approxi-
mately 85 or 95% by selecting a more powerful mining tool
(Figure 9b, c). In addition, a more detailed exploration cam-
paign could increase the area likely to be excavated effi-
ciently. To further optimize equipment selection, a detailed
risk assessment should be performed, comparing the likeli-
hood and costs of breakdown, wear, and additional mainte-
nance with the higher capital costs associated with more
powerful equipment.

CONCLUSIONS AND RECOMMENDATIONS
Conventional geostatistical estimation techniques cannot

correctly characterize block model uncertainty. Such estima-
tion models routinely smooth the spatial variability inherent
in a deposit and thus are not suitable for investigating the risk

associated with ore/waste decisions. To potentially overcome
these restrictions, geostatistical simulation techniques can be
used. Correct quantification and propagation of block model
uncertainty protects strategic investments and creates an
operation that performs closer to its potential (Dimitrakopou-
los, Farrelly, & Godoy, 2002). This statement applies to con-
ventional mining and even more so to deep-sea operations.

Generally, decisions are made on a block scale; therefore,
it is optimal to generate realizations on the SMU scale of
interest. This paper introduces the LAS method for generat-
ing simulated deposit models with average block concentra-
tions. The proposed simulation method was further
integrated into a systematic and robust framework. Accom-
panying validation guidelines were formulated to help
reduce the likelihood of costly mistakes and ensure that the
simulation results are representative.

The simulation package can be used to generate an entire
collection of correct representations (20–100) of the spatial
variability. The resulting realizations are propagated individu-
ally through a selection of transfer functions to translate the
block model parameters into financial or technical project risk.

Two case studies demonstrate the application of a proba-
bilistic evaluation approach. Integrating block model uncer-
tainty into decision-making substantially improves the
economic performance of classification decisions and the
likelihood of optimal equipment selection to enhance the
probability of a reliable and efficient operation. The simpli-
fied case studies were intended to illustrate the potential
impact of a risk-based decision-making strategy for mining
in general and for marine mining in particular. More
research, however, is required to establish a better under-
standing of the selectivity of seafloor excavation equipment
and its impact on the final mine design. The ore/waste deci-
sion might need to be made based on slurry volumes instead
of a conventional mining block.

Figure 9. Synthetic example of a probabilistic analysis of the efficacy of equipment with a) 200 kW, b) 300 kW, and c) 350 kW installed cutting power.
Grey indicates areas with a greater than 80% chance of the equipment being able to cut the rock. orange indicates areas with a greater than 80% chance
of equipment experiencing problems while cutting the rock. Purple indicates areas with intermediate probabilities.
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