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Since the charts of Taylor (1937), it has been well known in engineering geological investigations that the loca-
tion of the critical failure mechanism in a homogeneous undrained clay slope goes either deep (tangent to a firm
base) or shallow (through the toe) depending onwhether the slope angle is less than or greater than about 53°. In
reality, natural soils always exhibit spatial variability and the above expectations no longer hold true. The objec-
tive of this note is to investigate the failure mechanisms and probability of failure of slopes in random undrained
soil over awide rangeof slope angles. An elastic–perfectly plasticfinite elementmethod in combinationwith ran-
dom field generation, well known as the random finite elementmethod (RFEM), is employed. RFEM represents a
powerful tool for slope stability analyses that allow mechanisms to develop naturally within soil masses. It is
found that, for certain combinations of random field properties, relatively flat slopes may display a significant
number of shallow mechanisms and steeper slopes may display a significant number of deep mechanisms. For
a steep slope, the more variable the undrained shear strength, the less likely the slope is to display a toe mecha-
nism. Understanding the uncertainty of failuremechanisms is important because the consequencesmay bemore
serious in a deep failure as it involves a greater volume of soil.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Landslide risk assessment involves the probability of failure and the
consequences of failure (e.g. Christian, 2004; Ang and Tang, 2007;
Fenton and Griffiths, 2008; Khoshnevisan et al., 2014; Zhang et al.,
2014c). The probability of failure (pf) can be estimated fromengineering
analysis but the consequences of failure are site-specific (e.g. loss of life
and properties). As shown by the two slopes in Fig. 1, both cases have
failed, but the volume of sliding soil at the initiation of a landslide is
clearly different. The deeper failure mechanism can be assumed to be
more serious, because a greater volume of soil is involved.

Since the charts of Taylor (1937), it has beenwell known that the lo-
cation of the critical failure mechanism in a homogeneous undrained
clay slope goes either deep (tangent to a firm base) or shallow (through
the toe) depending on whether the slope angle is less than or greater
than about 53°. When slopes are made up of variable soil, however,
these expectations no longer hold true. Indeed soil shear strength prop-
erties can vary significantly from point to point (e.g., Li et al., 2009; Li
and Zhang, 2010; Cao and Wang, 2013; Juang et al., 2013; Lacasse
hs@mines.edu (D.V. Griffiths),
. Zhang).
et al., 2013; Zhao et al., 2013; Zhang et al., 2014a), and the failuremech-
anisms are also uncertain.

The random finite element method (RFEM) offers a systematic way
of accounting for spatial variability. The RFEM,which combinesfinite el-
ements with random fields generated to account for spatial variation,
has been applied successfully to slope reliability analysis (e.g., Griffiths
and Fenton, 2000, 2004; Fenton et al., 2013; Ali et al., 2014; Jiang
et al., 2014; Le, 2014; Lloret-Cabot et al., 2014; Zhang et al., 2014b).
RFEM not only estimates the value of pf but also delivers useful
visualisations of the failuremechanism and displacement vectors. A sig-
nificant advantage of RFEM is that it allows failure mechanisms to de-
velop naturally through soil masses by following the path of least
resistance.

The objective of this note is to investigate the failure mechanisms
and probability of failure of slopes in random undrained soil over a
wide range of slope angles. While the detailed assessment of runout
characteristics and failure consequences is beyond the scope of this
note, the fraction of failures which are deep vs. shallow is presented
for various slope angles and soil statistics. This allows the reader to
perform at least a qualitative assessment of landslide risk assessment
as a function of slope angle and soil variability.

A test slope in undrained clay is considered in this note and the ge-
ometry and input parameters of the slope are shown in Fig. 2. The
slope has an embankment depth of H = 10 m and a foundation to
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Fig. 1. Shallow and deep failure mechanisms in a stratified soil. Both cases have failed, but the consequences are clearly different.

32 H. Zhu et al. / Engineering Geology 191 (2015) 31–35
depth ratio of DH= 1.5H. The slope geometry given by H, D, β and sat-
urated unit weight γsat are assumed to be deterministic, but the un-
drained shear strength, cu, is taken as a spatially varying random
variable. The values of these parameters are summarized in Table 1. cu
is non-dimensionalized as C= cu/(γsatH) and characterized by a lognor-
mal distribution defined by amean (μC), a standard deviation (σC) and a
spatial correlation length (θln C).

A mechanism that goes through the toe but not tangent to the firm
base is called a toe failure mechanism. One that goes deep tangent to
the firm base and outcrops at the foundation layer is called a deep fail-
ure mechanism. Other mechanisms are entirely above the toe. The toe
and deep failure mechanisms displayed in deterministic soil are
shown in Fig. 3. The vertical cut (β = 90 °) and a flatter slope (β =
30 °) are selected as typical examples.

This note first describes issues on failure mechanisms and probabil-
ity of failure of slopes in random undrained soil and then introduces
briefly the random finite element method for slope stability analysis.
Subsequently, the influence of slope angle on failure mechanism and
location in undrained soil is presented in detail. Various coefficients of
variation of undrained shear strength are considered. The proportions
of toe failure mechanisms are examined. Finally, key conclusions are
drawn.
2. Brief introduction to the RFEM

The slope stability analysis uses an elastic–perfectly plastic stress–
strain law with a Mohr–Coulomb failure criterion. It involves applying
gravity loading and monitoring the stresses at all the Gauss points. If
the Mohr–Coulomb criterion at a Gauss point is violated, the algorithm
will try to redistribute the stresses to neighbouring elements that still
have reserves of shear strength. This is an iterative process that con-
tinues until both the Mohr–Coulomb criterion and the global equilibri-
um are satisfied at all Gauss points. In this study, failure is said to have
occurred if the algorithm is unable to satisfy these criteria within an
iteration ceiling, typically set to 500.

The undrained shear strength, cu, is considered as a spatially varying
random variable and the distribution of cu in the slope domain (Fig. 2) is
simulated as an isotropic random field. The non-dimensionalized shear
strength parameter, C, is assumed to follow a lognormal distribution.
The lognormal distribution guarantees that all the random variables are
non-negative and benefits from a simple transformation to the classical
H

DH

Input parameters

2.5 H

1.5H

D = 1.5

H = 10 m

Fig. 2. Geometry and input parameters for the test slope.
normal (Gaussian) distribution. It has been used and advocated by
many researchers as a reasonable model for soil properties (e.g. Lacasse
et al., 2013). The coefficient of variation, νC, given by

vC ¼ σC

μC
ð1Þ

is a useful guide to the dispersion of the distribution about themean. The
value of νC for undrained shear strength varies from small values to up to
0.6 (e.g. Ching and Phoon, 2013).

In addition to μC and νC, the spatial correlation length (θlnC) can be
included to describe the correlation between random variables at two
spatial locations. The correlation length denotes the distance over
which random values tend to be correlated. In the interests of generali-
ty, the correlation length has been non-dimensionalized by dividing it
by the slope height (Fig. 2) as follows:

Θ ¼ θ lnC=H: ð2Þ

The spatial correlation length is assumed isotropic throughout this
note and soil anisotropy is not considered (e.g. Zhu and Zhang, 2013).
An exponential decaying autocorrelation function of the following
form is used:

ρ ¼ exp −2τ=θ lnCð Þ ð3Þ

where ρis the correlation coefficient and τ is the absolute distance be-
tween two points in a random field. The correlation function describes
spatial persistence, i.e. soil samples taken close together are more likely
to have similar properties than if they are far apart.

A large number of realizations of the random field are generated,
each having the same statistics but differing in the locations of strong
and weak soils. A deterministic finite element analysis is conducted
for each realization of random field. In the context of RFEM, each
element within each realization of the Monte-Carlo process is assigned
a constant, but random, soil property. The statistics of the assigned value
are affected by the size of the element. The statistics of the underlying
log field due to local averaging are given by

σ lnCA
¼ σ lnC

ffiffiffi
Γ

p
ð4aÞ

μ lnCA
¼ μ lnC ð4bÞ
Table 1
Summary of input parameters for the test slope.

Parameter Definition Value

H (m) Slope height 10
D Foundation depth ratio 1.5
β (°) Slope angle 10–90
cu (kN/m2) Undrained cohesion Random variable
ϕu (°) Undrained friction angle 0
γsat (kN/m3) Saturated unit weight 20
ψ (°) Dilation angle 0
E (kN/m2) Young's modulus 105

Image of Fig. 2


Fig. 3. Definition of toe and deep failure mechanisms: (a) vertical cut (β = 90 °); and
(b) flatter slope (β = 30 °).
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Fig. 4. Probability of failure versus deterministic factor of safety (based on the mean) of
undrained slopes. DH= 1.5H, μC = 0.2 and Θ = 0.5.
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where Γ is the variance reduction factor ranging between 0 and 1.
Eqs. (4a) and (4b) lead to the following statistics of log-normal field,
which are mapped onto the finite-element mesh,

μCA
¼ exp μ lnCA

þ 1
2
σ 2

lnCA

� �
ð5aÞ

σCA
¼ μCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp σ2

lnCA

� �
−1

r
: ð5bÞ

If the distribution of the random variable is normal, local averaging
over the element reduces the variance but the mean is unaffected. If a
lognormal distribution is assumed, as is the case here, both the mean
and the variance are reduced by local averaging (e.g. Griffiths and
Fenton, 2001). Adjustment to the statistics due to local averaging should
be implemented prior to generating the random field used tomap shear
strengths to their associated finite elements. The local averaging over
the elements and subsequent random field generation is accomplished
by using the Local Average Subdivision method developed by Fenton
and Vanmarcke (1990). Following a sufficient number of Monte-Carlo
simulations, the pf is obtained as the proportion of the total number of
simulations that required 500 iterations or more.

In this note, a range of non-dimensionalized spatial correlation
lengths and different vC values are considered. 2000 simulations are
determined to be sufficient to give a reliable and reproducible estimate

of pf in each analysis case. The standard error of the estimate is σp f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pf 1−pf

� �
=n

r
, where n is the number of simulations (Fenton et al.,

2013). σp f
is 0.0067 when n is 2000 and pf is 0.1. In the following two

sections, results of the RFEM analyses are presented to demonstrate
the influence of slope angle on the pf and failure mechanisms of slopes
in random undrained clay.

3. Probabilistic stability analysis of the test slope

In this section we present results of RFEM analysis on the test slope
in Fig. 2 for a range of slope angles (β) and coefficients of variation of un-
drained strength (νC). Fig. 4 shows that, for a typical range of νC values
withΘ=0.5, the greater the value of νC, the greater the value of pf for all
slope angles considered. Fig. 5 demonstrates that, with fixed values of
DH=1.5H, μC =0.2 and Θ=0.5, a β=30 ° slope with a deterministic
factor of safety of 1.2 (based on the mean) can result in a pf as high as
0.38. It should be noted that a factor of safety based on the mean
strength of a variable soil would generally lead to optimistic estimates
of the level of safety. A lower value of the characteristic strength
would typically be used in practice as discussed by Griffiths and
Fenton (2004). Fig. 5 also demonstrates that for the cases considered,
the probability of failure becomes vanishingly small when the factor of
safety is approximately greater than 1.4 and 1.6, respectively, for
νC = 0.2 and 0.4.

Fig. 6 shows the relationships between pf and slope angle for various
correlation lengths. All the analysis cases in Fig. 6 are subjected to the
condition of DH = 1.5H, μC = 0.2 and νC = 0.2. For all correlation
lengths, pf increases with increasing slope angle, which is expected.
However, the failure probability is two-tailed when Θ tends to 0: pf
tends to 1 for slope angles greater than about 48° but tends to 0 for
slope angles less than about 48°. The findings emphasize the impor-
tance of the slope angle in the relationship between pf and Θ. Including
the spatial soil variability helps quantify the chance of “non-failure” of
very steep slopes.

4. Failure mechanisms

Fig. 7 shows undeformed and deformedmeshes at failure for several
combinations of parameters. Unlike the deterministic case, when the
slope consists of spatially random soil, a vertical cut may display a
deep mechanism (Fig. 7(g)) and a flat slope may display a shallow
mechanism (Fig. 7(h)). Following each set of Monte-Carlo simulations,

Image of Fig. 4
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the proportion of toe failure mechanisms defined earlier (ratio of the
number of toe failuremechanisms to the total number of failure simula-
tions) has been recorded.
Fig. 7. Failuremechanismof undrained slopewith fixedC=0.2 andΘ=0.5. Undeformedmesh
at failure: (c) μC=0.2,νC=0.2 andβ=90° and (d) μC=0.2, νC=0.2 andβ=30°; undeformed
mesh at failure: (g) μC = 0.2, νC = 0.3 and β = 90° and (h) μC = 0.2, νC = 0.3 and β= 30°.
Fig. 8 shows the proportion of toe failures as a function of slope angle
for a range of coefficients of variation of undrained shear strength at a
fixed correlation length. The step-function result corresponding to
νC = 0 is based on the β = 53° transition point indicated by Taylor's
chart. For random undrained vertical cuts (β=90 °), a significant num-
ber of deep failure mechanisms are observed when weaker soil is
present in the deeper foundation layer, and for flatter slopes (β =
30 °), a significant number of toemechanisms are observedwhenweak-
er soil is present in the shallower embankment zone. Fig. 8 also shows
that for all vC values, the proportion of toe mechanisms increases with
increasing slope angle but tends to flatten out at high slope angles. For
example, the rate of increase of toe failures reduces significantly at
: (a) μC=0.2, νC=0.2 andβ=90° and (b) μC=0.2, νC=0.2 andβ=30°; deformedmesh
mesh: (e) μC=0.2,νC=0.3 andβ=90° and (f) μC=0.2,νC=0.3 andβ=30°; deformed

Image of Fig. 8
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β=60° for vC =0.1, β=40° for vC =0.2 and β=25° for vC =0.3. For
higher slope angles, themore variable the undrained shear strength, the
smaller the proportion of toe mechanisms that the slope will display. It
is expected that, with awider distribution of the strength due to a great-
er νC, weaker soil is more likely to be situated at the deeper foundation
layer.

5. Conclusions

This note investigates the failure mechanisms and probability of
failure of undrained slopes in spatially random soil modelled by an
isotropic random field. The following conclusions can be drawn:

1. The importance of the slope angle, β, on the relationship between pf
and the non-dimensionalized spatial correlation length, Θ, is empha-
sized. For the test slope, as Θ → 0, pf → 1 when β N 48° and pf → 0
when β b 48 °. The impact of this phenomenon on engineers' risk
perception should be noted.

2. For random undrained vertical cuts (β= 90 °), a significant number
of deep failure mechanisms are observedwhenweaker soil occurs in
the foundation layer; and for flatter slopes (β = 30 °), a significant
number of toe mechanisms are observed when weaker soil occurs
in the shallower embankment zone.

3. The proportion of toe mechanisms increases with increasing slope
angle β until tending to flatten out at higher values of β.

4. For higher slope angles, the more variable the undrained shear
strength, the less likely the slope is to display a toe mechanism.

Notation

The following symbols are used in this note:

H slope height
D foundation depth ratio
β slope angle
γsat saturated soil unit weight
cu undrained shear strength
C non-dimensionalized undrained shear strength
μC mean of C
σC standard deviation of C
θln C spatial correlation length of ln C
vC coefficient of variation of C
Θ non-dimensionalized spatial correlation length
pf probability of failure
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