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Influence of soil shear strength spatial variability on the compressive strength of a
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ABSTRACT
This paper studies the probability of failure of a soil block consisting of random soil using the
random finite element method (RFEM). The shear strength parameters (c′, tanf′) are treated as
random variables characterized by a mean, a coefficient of variation and a spatial correlation
length θ. Both normal and log-normal input distributions are considered. A “worst-case” spatial
correlation length, which leads to a maximum probability of failure, is clearly demonstrated. This
“worst-case” spatial correlation length, which is also observed in other geotechnical applications,
has implications for design and can be used in the absence of more detailed information about
the soil spatial variability to target a conservative design.
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Notation

B block height
c′ soil cohesion
E Young modulus
FS factor of safety
pf probability of failure
qdet deterministic compressive strength based on the

mean of input variables
qMedian deterministic compressive strength based on the

median of input variables
qu compressive strength
V coefficient of variation
θ spatial correlation length
Θ dimensionless spatial correlation length
μ mean
υ Poisson’s ratio
ρ cross-correlation between random variables
ρτ point-wise correlation in random field
σ standard deviation
τ vector between two points in a random field
w′ friction angle of soil

Introduction

The paper uses the random finite element method
(RFEM; e.g. Griffiths and Fenton 1993) to investigate
the compressive strength statistics of a block of soil
with random cohesion and friction. There are several
tools for probabilistic analysis in geotechnical engineer-
ing, but few of them properly take account of soil spatial
variability. The spatial variability of soil properties has
shown to affect the behaviour of geotechnical problems
such as bearing capacity, seepage, settlement, shear
strength and slope stability analysis (e.g. Griffiths and
Fenton 2004; Soubra, Massih, and Kalfa 2008; Griffiths,

Huang, and Fenton 2009; Cho and Park 2010; Huang,
Griffiths, and Fenton 2010; Ching and Phoon 2013;
Ching, Phoon, and Kao 2014). Other studies have
claimed that proper spatial correlation modelling is
unnecessary because the highest probability of failure
corresponds to that with an infinite spatial correlation
length, that is, that obtained using a single random vari-
able analysis in which each simulation is uniform (e.g.
Cho 2007; Javankhoshdel and Bathurst 2014). The
block compression problem was chosen in this paper
as a simple problem that demonstrates phenomena,
such as the “worst-case” spatial correlation length, that
can be extrapolated to other geotechnical application.
The paper focuses on the influence of (1) the spatial cor-
relation length of shear strength parameters and (2) the
input probability density functions, that is, normal and
log-normal.

RFEM model

As shown in Figure 1, a plane strain square block of soil
with the boundary conditions as indicated was subjected
to fixed incremental vertical displacement on the top sur-
face. The mesh consisted of square eight-node elements.

The RFEM implementation used in this study com-
bines elastic–plastic finite element analysis (e.g. Smith
and Griffiths 2004) with random fields generated using
the local average subdivision (LAS) method (Fenton
and Vanmarcke 1990). This method is described in detail
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in Fenton and Griffiths (2008). A benefit of the RFEM is
that full account is taken of local averaging and variance
reduction over each element. The RFEM is used in con-
junction with Monte-Carlo simulations in which the
analysis is repeated until the probabilities relating to out-
put quantities of interest become statistically reproduci-
ble. For each Monte-Carlo simulation, the top nodes of
the block were incrementally displaced vertically, until
the sum of the nodal reactions divided by block width
B levelled out to within a given tolerance. At this point,
the compressive strength qu was recorded before moving
on to the next simulation. Although the soil properties
generated for each simulation of the Monte-Carlo pro-
cess involve the same mean, standard deviation and
spatial correlation length, the spatial distribution of
properties varies from one realization to the next,
hence each simulation gives a different value of qu. Fol-
lowing a sufficient number of realizations, the mean
and standard deviation of the compressive strength qu
can be computed.

The spatial correlation length has units of length and
represents the distance over which the soil property in
question is reasonably well correlated to its neighbours.
In this paper, a “Markovian” correlation function is
used where the spatial correlation is assumed to decay
exponentially with distance (Vanmarcke 1984)

rt = e−2t/u (1)

where u is the isotropic spatial correlation length and rt
is the correlation coefficient between any two points sep-
arated by t. In this study, the spatial correlation length is
non-dimensionalized in the form Θ = θ/B.

The soil cohesion c′ and tangent of internal friction
angle tan w′ were modelled as random variables, while
Young’s modulus E and Poisson’s ratio υ were determi-
nistic and held constant at 105 kN/m2 and 0.3, respect-
ively. Both normal and log-normal distributions of
random variables c′ and tan w′ were considered separ-
ately in this study. Both distributions were defined by a
mean µ and a standard deviation σ. In the normal case,
the probability density function of (shown here for c′)
was given by

f (c′) = 1

sc′
����
2p

√ exp − 1
2

c′ − mc′

sc′

( )2
{ }

(2)

and in log-normal case by

f (c′) = 1

c′ sln c′
����
2p

√ exp − 1
2

ln c′ − mln c′

sln c′

( )2
{ }

(3)

The coefficient of variation V and spatial correlation
length Q were assumed to be the same for both c′ and
tanf′, thus

V = sc′

mc′
= stanf′

mtanf′
(4)

and

Q = Qc′ = Qtanf′ (5)
In order to maintain reasonable accuracy and run-

time efficiency, the influence of mesh refinement was
examined for two different mesh densities as shown in
Figure 2, to decide on the optimum meshing for the
model. The mesh density has been shown to have a sig-
nificant influence in finite element analysis (e.g. Huang
and Griffiths 2015). The “coarse” mesh shown in Figure
2(a) had 400 elements while the “fine” mesh shown in
Figure 2(b) had 1600 elements. A series of analyses was
then performed in which the mean of c′ and tan w′

were kept constant and equal to μc′ = 100 kPa and μtan w′-

= tan 30° = 0.577. The coefficient of variation was fixed
at V = 0.3 for both random variables, while the (isotro-
pic) spatial correlation length Θ was varied. The vari-
ables c′ and tanf′ were initially assumed to be
uncorrelated.

The mean compressive strength μqu was calculated by
averaging the compressive strength over 2000 Monte-
Carlo simulations and normalizing it with respect to
the deterministic value qdet = 346.4 kPa, which was
based on the mean values of input parameters μc′ and

Figure 1. Loading and boundary conditions for the block com-
pression problem.
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μtan w′ using the equation (Griffiths, Fenton, and Tveten
2002):

qdet = 2mc′ mtanf′ + (1+ m2
tanf′ )(1/2)

[ ]
(6)

Figure 3 shows the effect of mesh density on the nor-
malized compressive strength (μqu/qdet) versus spatial
correlation length (Θ) for the block with V = 0.3. A
log-normal distribution was assumed for the input ran-
dom variables. The finer mesh indicated a slightly
lower mean strength since it gives more failure path
options through the block. The difference is quite small
however, so the coarser mesh is deemed to give reason-
able precision for the current paper.

Figure 4 shows two typical failure mechanisms with
the soil cohesion distribution in the form of a grey
scale in which weaker regions are lighter and stronger
regions are darker. Figure 4(a) has a relatively low spatial
correlation length while Figure 4(b) presents a model

with higher spatial correlation length. It should
be emphasized that the mean and standard
deviation of the input random variables are the same
in both cases.

Parametric study

The same block with μc′ = 100 kPa and μtan w′ = 0.577 was
then analysed with different coefficients of variation and
spatial correlation lengths. Figure 5 illustrates the results
of these analyses with log-normal input random
variables.

An observation from Figure 5 is that by increasing Θ,
the mean compressive strength of the block converges to
the deterministic value based on the mean
input variables for all cases. There are considerable
differences at lower values of the spatial correlation
length however.

When Θ approaches 0, the average of the random
field tends to the median (e.g. Griffiths and Fenton
2004), hence the compressive strength can be estimated
analytically from Equation (6) using the median values
of the input random variables. As shown below, when
V = 0.3 the median of the shear strength parameters
leads to a normalized compressive strength of 0.94,
which is in close agreement with Figure 5. Similar checks
could be made for other values of V

Medianc′ = mc′��������
1+ V2

√ = 100���������
1+ 0.32

√ = 95.78 kPa

Mediantanf′ = mtanf′��������
1+ V2

√ = 0.577���������
1+ 0.32

√ = 0.553

qMedian = 2c′ [tanf′ + (1+ tan2f′)0.5]
= 2× 95.78 [0.553+ (1+ 0.5532)0.5 = 324.8 kPa

Figure 2. Mesh used for the finite element block compression analysis.

Figure 3. Variation of μqu with Θ with different mesh densities,
V = 0.3.
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qMedian

qdet
= 324.8

346.5
= 0.937

The normalized compressive strength displays a mini-
mum value for all cases when Θ between 0.1 and 1.

Figure 6 shows results from a similar parametric study
using normal distributions for c′ and tanf′. The trends
are similar to that obtained with the log-normal distri-
bution, however, the “worst-case” phenomenon is
more pronounced. For example, with V = 0.5 the mini-
mum value of the normalized compressive strength is
about 0.4 compared with 0.68 in the log-normal case.
For a better comparison, the normalized compressive
strength versus Θ curves for both normal and log-
normal distributions have been plotted on the same
graph for V = 0.2, 0.3 and 0.5 in Figure 7.

It was speculated that the reason for the difference
between normal and log-normal results might lie in the

occasional generation of negative property values when
using the normal distribution. For example, for V = 0.3,
0.04% of each input values could be negative, and when
V= 0.5, this number increases to 2.27%. These percentages
remain quite small, however, and cannot explain the
differences shown in Figure 7. A more likely explanation
may be related to the overall difference between
normal and log-normal distributions as V is increased as
shown in Figure 8. For V= 0.2, the distributions
are quite similar but are starting to differ significantly for
V= 0.5.

Probability of failure (pf)

A probability of failure pf in the block problem can be
defined as the probability that the true compressive

Figure 4. Typical random field realization and failure mechanisms for the block compression problem, μc′ = 100 kPa and μtan w′ = 0.577:
(a) Θ = 0.1 and (b) Θ = 5. (The deformed meshes at the bottom of the models are because of graphical scaling.)

Figure 5. Variation of normalized μqu with Θ and V with a log-
normal distribution for the input random variables, μc′ = 100
kPa and μtan w′ = 0.577.

Figure 6. Variation of normalized μqu with Θ and V with normal
distribution for the input random variables, μc′ = 100 kPa and μtan
w′ = 0.577.
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strength (calculated with RFEM) is less than factored
strength calculated with mean values of c′ and tan w′,
that is,

pf = P qu ,
qdet
FS

[ ]
(7)

The influence of the cross-correlation ρ between random
variable c′ and tan w′ was studied by considering values
in the range 0 ≤ r ≤ 1, where r = 1 gives perfect posi-
tive correlation, r = 0 gives no correlation, and
r = −1 gives perfect negative correlation. The pf vari-
ation with the normalized spatial correlation length Θ
for these three analyses have been plotted in Figure 9.
The results were obtained with log-normal distribution
functions for both variables and a coefficient of variation
equal to 0.2. A factor of safety of 1.3 was applied for cal-
culating the probability of failure.

Figure 9 demonstrates very significant differences in
pf depending on the value of the cross-correlation coef-
ficient between c′ and tan w′. Quite high pf values, up to
about 0.25, are observed when r = 1, while the prob-
ability of failure when r = −1 is essentially zero for all
values of spatial correlation. Zero correlation with
r = 0 leads to intermediate (although still quite high)
values of pf . Similar trends have been reported for
other geotechnical engineering problems such as slope
stability analysis (e.g. Allahverdizadeh, Griffiths, and
Fenton 2015). Although the assumption of positive
cross-correlation is the most conservative, it has been
suggested by some investigators (e.g. Cherubini 2000)
that c′ and tan w′ may actually be negatively cross corre-
lated. Thus, modelling the block with no correlation
(r = 0) between c′ and tan w′ might still be on the con-
servative side. Cross-correlation between c′ and tanf′ is
a topic of need of further investigation (e.g. Griffiths,
Huang, and Fenton 2009), but for the remainder of
this study, the shear strength parameters will be assumed
to be uncorrelated.

Figure 10 shows the pf versus Θ for the block when V
= 0.2 for different factors of safety when the input ran-
dom variables have a log-normal distribution. By
increasing FS, the pf decreases, but there is still 5% prob-
ability of failure at high spatial correlation lengths with
FS = 1.5. The “worst-case” observation made earlier in
this paper nowmanifests itself as a maximum probability
of failure. The “worst-case” spatial correlation length Θw

is about 0.5 when FS is equal to 1.2 and increases as FS
increases. When FS = 1.5, Θw is essentially tending to
infinity. This “worst-case” phenomenon is an important
observation that suggests that single random variable
approaches that ignore spatial variability (by essentially
assuming Q � 1) can be unconservative. The “worst-
case” spatial correlation length was observed previously
in bearing capacity and settlement analysis of strip foot-
ings (e.g. Ahmed and Soubra 2012; Al-Bittar and Soubra
2013) and slope stability analysis (e.g. Allahverdizadeh,
Griffiths, and Fenton 2015).

When Θ is small, c′ and tan w′ are highly spatially
variable, hence each Monte-Carlo simulation gives

Figure 7. Variation of normalized μqu with Θ with normal and
log-normal distributions for the input random variables, μc′ =
100 kPa and μtan w′ = 0.577, (a) V = 0.2, (b) V = 0.3 and (c) V = 0.5.
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essentially the same result. As mentioned previously,
when using a log-normal distribution the average of
the soil shear strength parameters tends to be the
median. Considering the case of V = 0.2, the median of
c′ and tan w′ is 98.06 and 0.566, respectively; thus, the
compressive strength of the block based on the median
of input random variables from Equation (6) is
qMedian, V=0.2 = 336.35 kPa.

This value is less than the qdet = 346.5 kPa; however,
by applying a factor of safety of 1.2 (say) the factored
qdet becomes 288.75 kPa implying a probability of failure
of 0. If the factored value of qdet was still higher than the
qMedian, a probability of failure of 1 would appear for that
case. This case is more likely to happen when the coeffi-
cient of variation of random variables increases which
results in lower median values for random variables.

For large spatial correlation lengths (e.g. Q ≈ 100),
each simulation is essentially uniform but different
from one simulation to the next. Thus, the value of the

pf in this case agrees with that obtained using Monte-
Carlo with one random variable approach as shown in
Table 1. These predicted values are very close to the
ones observed in Figure 10 when Θ = 100. The only
case that the pf at Θ = 100 is slightly higher than its
value in Table 1 is when FS = 1.2. The reason is that
for this case pf is still decreasing by increasing Θ
from 10 to 100. By approaching Θ to infinity, this
value is expected to converge to the values presented in
Table 1.

Figure 8. Normal and log-normal distributions of c′ with different coefficients of variation, μc′ = 100 kPa.

Figure 9. Variation of the probability of failure with Θ for differ-
ent cross-correlations, V = 0.2, FS = 1.3, μc′ = 100 kPa and μtan w′

= 0.577. Figure 10. Variation of the pf with FS and Θ, V = 0.2 with log-
normal distribution, μc′ = 100 kPa and μtan w′ = 0.577.

Table 1. pf values for the block compression problem using a
single random variable approach Θ → ∞ with V = 0.2, μc′ =
100 kPa and μtan w′ = 0.577.
Factor of safety Probability of failure

1.2 0.236
1.3 0.137
1.4 0.079
1.5 0.039

GEORISK 7



In finite element analyses, the failure mechanism is
free to seek out the weakest path through the soil.
Figure 11 shows two typical failure mechanisms for the
block compression problem when V = 0.2 and the spatial
correlation length of the random variable is set Θ = 1,
which is close to the “worst-case” value. The reason for
the “worst-case” phenomenon is thought to be that
there is some intermediate spatial correlation lengths
that facilitate more failure options over a set of Monte-
Carlo simulations. The two examples in Figure 11
show the failure mechanism going through weak regions,
(represented by lighter shades), and developing failure
modes that could not happen in a more uniform block.

The pf versus Θ for different values of V has been
plotted in Figure 12 when FS = 1.3. This figure shows
that the probability of failure also increases by increasing
the coefficient of variation. This graph has two branches:
one when V≤ 0.4 where pf starts at 0 and subsequently
increases with Θ and another when V≥ 0.5 where pf
starts at 1 and subsequently decreases. The reason is

that the coefficient of variation of V = 0.5 results in
lower values for qmedian than the factored qdet as it was
explained earlier.

As shown in Figure 12, the coefficient of variation also
seems to have an influence on the worst-case spatial cor-
relation length, with Θw increasing as V is decreased. For
this block compression problem when FS = 1.3, V = 0.5
gives Θw≈ 0.01 and when V = 0.2, Θw≈ 2.

The probability of failure has also been calculated for
the block with normally distributed input random vari-
ables as shown in Figure 13 when FS = 1.3. Log-normal
and normal are compared directly for V = 0.2 in Figure
14 and show similar results.

Comparison of Figures 12 and 13 shows that log-normal
and normal distributions for the input random variables
lead to similar pf for the block compression problem
when the coefficient of variation is less than 0.4. For the
case with V = 0.5, however, there is a very significant differ-
ence between the normal and log-normal distributions.

When Θ is small, the block becomes increasingly uni-
form with essentially constant strength at each

Figure 11. Two typical failure mechanism for the block compression problem when V = 0.2 and Θ = Θw = 1. (The deformed meshes at
the top and bottom of the models are because of graphical scaling.)

Figure 12. Variation of pf with Θ and V, FS = 1.3 with log-normal
distribution, μc′ = 100 kPa and μtan w′ = 0.577.

Figure 13. Variation of pf with Θ and V, FS = 1.3 with normal dis-
tribution, μc′ = 100 kPa and μtan w′ = 0.577.
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simulation. For the block model with the normal distri-
bution, c′ and tan w′ tend to their mean values; however,
in the log-normal case, they tend to their median values
which are lower (weaker). The mean values of c′ and tan
w′ in the normal case give the same values for the com-
pressive strength as qdet and consequently pf = 0 after
application of any factor of safety >1. In the log-normal
case using median values, the factored compressive
strength was calculated to be less than the qdet when V
= 0.5, hence pf = 1.

Conclusions

This paper has studied the probability of failure for a
block compression problem using the RFEM. The influ-
ence of the coefficient of variation V, spatial correlation
length Θ, cross-correlation between strength parameters
and the choice of input random variable distribution
functions (normal or log-normal) on the probability of
failure pf were investigated. It was shown clearly that a
worst-case spatial correlation length exists for the block
compression problem studied in this paper. The worst-
case spatial correlation length, leading to a maximum
probability of failure, was shown to be of the order of
0.1B to 2B, where B is the square block dimension. The
implication of this result for the design is that in the
absence of good quality data on the spatial correlation
length, it should be fixed to its worst-case value Θw in
the interests of conservatism. This result is a practical
and important finding, as the soil spatial variability is
generally difficult and expensive to estimate accurately.

A brief investigation of cross-correlation between
c′ and tanf′ indicated that the level of correlation
could make a significant difference to the probability
of failure for a given factor of safety. The results
show that a negative cross-correlation between the two

random variables considered in this paper, can result
in a smaller probability of failure than the case with no
cross-correlation, while considering a positive cross-
correlation would increase the probability of failure.

For the block problem, results from normal and log-
normal input distributions were similar when the coeffi-
cient of variation was small and increasingly differed as
the coefficient of variation increases. The biggest differ-
ences between the results of normal and log-normal dis-
tributions occurred at low spatial correlation lengths,
when local averaging can result in properties being
“safe” with the normal distribution and “unsafe” with
the log-normal. It should be remembered, however,
that the results of the RFEM start to display discretiza-
tion errors and statistical distortion due to local aver-
aging when the elements are too big to properly model
the spatial variability. It can still be stated, however,
that careful consideration should always be given to
the choice of input probability density functions for geo-
technical analysis. Distributions should be based on
high-quality field data if available, but if that is not
available, a conservative approach should always be
followed.
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