
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
Published online 18 January 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nag.2496
Neural network prediction of the reliability of heterogeneous
cohesive slopes
Y.H. Chok1,4,*,†, M.B. Jaksa1, W.S. Kaggwa1, D.V. Griffiths2 and G.A. Fenton3

1School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
2Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, U.S.A.

3Department of Engineering Mathematics, Dalhousie University, Halifax, NS B3J 2X4, Canada
4AECOM, Fortitude Valley, QLD 4006, Australia
SUMMARY

The reliability of heterogeneous slopes can be evaluated using a wide range of available probabilistic
methods. One of these methods is the random finite element method (RFEM), which combines random field
theory with the non-linear elasto-plastic finite element slope stability analysis method. The RFEM computes
the probability of failure of a slope using the Monte Carlo simulation process. The major drawback of this
approach is the intensive computational time required, mainly due to the finite element analysis and the
Monte Carlo simulation process. Therefore, a simplified model or solution, which can bypass the computa-
tionally intensive and time-consuming numerical analyses, is desirable. The present study investigates the
feasibility of using artificial neural networks (ANNs) to develop such a simplified model. ANNs are well
known for their strong capability in mapping the input and output relationship of complex non-linear sys-
tems. The RFEM is used to generate possible solutions and to establish a large database that is used to
develop and verify the ANN model. In this paper, multi-layer perceptrons, which are trained with the
back-propagation algorithm, are used. The results of various performance measures indicate that the devel-
oped ANN model has a high degree of accuracy in predicting the reliability of heterogeneous slopes. The
developed ANN model is then transformed into relatively simple formulae for direct application in practice.
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1. INTRODUCTION

Probabilistic slope stability analysis has been widely used to evaluate the reliability of heterogeneous
slopes. The aim is to incorporate uncertainties due to soil properties, that is, soil spatial variability, into
the slope stability analysis. One of the available probabilistic slope stability analysis methods is the
random finite element method (RFEM) developed by Griffiths and Fenton [1, 2]. The RFEM
combines random field theory with the non-linear elasto-plastic finite element slope stability analysis
method. This approach computes the probability of failure of a slope via the Monte Carlo simulation
process. The spatial variability of soil properties is modelled by a random field, which can be
described concisely by the mean, coefficient of variation (COV) and the scale of fluctuation. The
Monte Carlo simulation involves repeated finite element slope stability analysis of a large number of
generated random fields that simulate the spatial variability of the soil properties. In order to obtain
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a representative and reproducible estimation of the probability of failure of a slope, a very large number
of repetitions or realizations are required. Hence, the major drawback of the RFEM and Monte Carlo
simulation is that they are computationally intensive. Performing parametric studies or sensitivity
analysis using this approach is therefore a time-consuming task.

This paper investigates the feasibility of developing a meta-model using a computational tool
known as artificial neural networks (ANNs) to predict the reliability of heterogeneous slopes.
Ideally, the developed ANN model is capable of predicting the probability of failure of a slope
close to that calculated by using the RFEM approach. The advantage of the developed ANN model
is that it has a significantly less computational time than the RFEM approach, although a large
number of RFEM analyses are initially required to compile a database that is used to develop and
validate the ANN model.
2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a class of non-linear computational tools that attempt to mimic the way in
which the human brain processes information. ANNs have been successfully applied to a wide range of
geotechnical problems [3–5]. The most widely used ANNs are the multi-layer perceptrons (MLPs) that
are trained with the back-propagation algorithm [6]. A comprehensive description of back-propagation
MLPs is beyond the scope of this paper and can be found in the many publications (e.g.[7–10]). The
typical structure of MLPs consists of a number of interconnected neurons or processing elements.
The neurons are logically arranged into layers: an input layer, one or more intermediate layers called
hidden layers and an output layer. Each neuron is connected to all the neurons in the next layer via
weighted connections. The scalar weights determine the strength of influence between the
interconnected neurons. The input from each neuron in the previous layer (xi) is multiplied by an
adjustable connection weight (wji). The weighted input values, at each neuron, are summed, and a
threshold value or bias (Bj) is added or subtracted. The result (Ij) is then passed through a non-linear
transfer function (f(.)) (e.g. sigmoid or tanh function) to produce the output of the neuron (yi). The
output of one neuron provides the input to the neurons in the next layer. This process is summarized
in Eqns (1) and (2) as follows:

I j ¼
Xn
i¼1

wjixi þ Bj (1)

yi ¼ f I j
� �

(2)

where Ij = the activation level of node j; wji = the connection weight between nodes i and j; xi = the
input from node i, i=0, 1, …, n; Bj = the bias for node j; yj= the output of node j; and f(Ij) = the
transfer function.

The basic methodology of ANNs consists of three stages; (i) network training, (ii) network testing
and (iii) network validation. ‘Training’ of the neural network involves adjusting the connection
weights by repeatedly presenting a historical set of model inputs and the corresponding (desired)
outputs. The objective is to minimise the errors between the predicted and desired output values.
The number of training samples presented between weight updates is called an epoch. This iterative
process of correcting the weights at the completion of each epoch until the errors are minimal is
based on the gradient-descent technique. The process of training continues until some stopping
criterion is achieved so that the network can obtain a set of weights that will produce the smallest
possible error. In this study, the cross-validation technique [11] is used as a stopping criterion to
ensure that overfitting does not occur [12]. Cross-validation also known as the testing stage of the
ANN model’s development in which the data set is used to decide when to stop training to avoid
overfitting. Finally, a validation data set, which has not been used in training nor testing of the ANN
models, is used to assess the accuracy and predictive ability of the model.
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
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3. DATA GENERATION USING RANDOM FINITE ELEMENT METHOD

To generate data for developing ANN models, a parametric study is carried out, using the RFEM, to
investigate the effect of soil variability on the reliability of cohesive slopes with different geometries by
varying the slope angle (β) and depth factor (D). The geometry of the slope problem is shown in Figure 1.

The slope is assumed to consist entirely of purely cohesive soil under undrained conditions (ϕu=0),
with the soil strength described by the undrained shear strength (cu). In the context of probabilistic
analysis, cu is assumed to be lognormally distributed, which is characterized by a mean (μ) and a
standard deviation (σ). The mean and standard deviation can be expressed in terms of the
dimensionless COV, defined as follows:

COV ¼ σ=μ (3)

The spatial variability of soil properties is modelled by the scale of fluctuation (θ). A large value of θ
implies a more smoothly varying field, while a small value of θ indicates one that varies more
randomly. In this study, the correlation structure of soil properties is defined by an exponentially
decaying (Markovian) correlation function as follows:

ρ τð Þ ¼ exp � 2 τj j
θ

� �
; (4)

where ρ= correlation coefficient between the underlying random field values at any two points
separated by a lag distance τ.

In the interest of generality, the scale of fluctuation (θ) was normalised with respect to the slope
height (H) (i.e. θ/H), while the mean value of the cu was expressed in terms of a dimensionless
stability coefficient, Ns, similar to Taylor’s [13] stability number, and expressed as follows:

Ns ¼
μcu

γH
; (5)

where μcu = the mean value of cu; γ=unit weight of the soil; and H= slope height as shown in Figure 1.
The random field of shear strength values is simulated using the local average subdivision method [14].

The local average subdivision algorithm generates correlated random variables in which their correlation
is governed by the correlation function in Eqn (4). These random variables are then mapped onto the finite
element mesh. The element size used in the finite element analysis is fixed at 1m by 1m for all slope
geometries. Therefore, each element in the mesh is assigned a random variable, and neighbouring
elements are correlated with each other. Figure 2 shows two typical random field realizations of cu
with different scales of fluctuation. The darker elements indicate stronger soils.

The finite element analysis is based on an elastic-perfectly plastic stress–strain law with a Tresca
failure criterion. It uses eight-noded quadrilateral elements and reduced integration in both the
stiffness and stress distribution parts of the algorithm. The plastic stress distribution is accomplished
by using a visco-plastic algorithm. The theoretical basis of the method is described more fully in the
Figure 1. Geometry of the cohesive slope problem.
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Figure 2. Typical random field realizations of undrained shear strength (cu) with scales of fluctuation of (a)
θ/Η= 0.1 and (b) θ/Η= 1.
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text by Smith and Griffiths [15]. The application of the finite element method in slope stability analysis
is described more fully by Griffiths and Lane [16].

Briefly, the analyses involve the application of gravity loading and the monitoring of stresses at all
Gauss points. If the Tresca failure criterion is violated, the programme attempts to redistribute excess
stress to neighbouring elements that still have reserve strength. This iterative process continues until
the Tresca failure criterion and global equilibrium are satisfied at all points within the mesh under
strict tolerances.

Based on a given set of statistics (μ, σ, θ) for a soil property, multiple possible random fields can be
generated. These random fields are then mapped directly to the finite elements to establish the input soil
properties for slope stability analysis. For each generated random field, a single finite element analysis
is performed. Hence, in this context, probabilistic analysis involves the repeated finite element analysis
for each realization or repetition of soil properties as part of the Monte Carlo simulation process. The
probability of failure (pf) of a slope is therefore estimated by the following:

pf≈
nf
n
; (6)

where n is the total number of realizations in the simulation process and nf is the number of realizations
where slope failure occurred. Slope failure is indicated by non-convergence of the finite element
algorithm after 500 iterations [2]. In this study, 2000 realizations of the Monte Carlo simulation
were performed for each RFEM run to estimate the probability of failure. Based on 2000

independent realizations, the estimated probability of failure, p̂f , has standard error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂f 1� p̂f
� �

=n

r
,

which for a probability level of 5% is 0.5%.
The input parameters β, D, Ns, COV and θ/H are varied systematically, and the values adopted in the

parametric studies are given in Table I. The slope angles, β, of 14°, 18.4°, 26.6° and 45°, which
represent slopes of 4H:1V, 3H:1V, 2H:1V and 1H:1V, respectively, are adopted. The scale of
fluctuation (θ) is assumed to be isotropic, that is, the horizontal θ and the vertical θ are equal. Other
parameters are held constant at their deterministic values, that is, slope height, H=10m; unit weight,
γ=20kN/m3; Young’s modulus, Es=1×10

5 kPa; Poisson’s ratio, ν=0.3; and dilation angle, ψ =0°.
4. DEVELOPMENT OF NEURAL NETWORK MODELS

The development of ANN models essentially involves a number of steps, which are carried out in a
systematic manner [17]. These include the determination of model inputs and outputs, division and
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
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Table I. Input values for parametric studies.

Parameters Input values

β 14°, 18.4°, 26.6°, 45°
D 1, 2, 3
Ns 0.1, 0.2, 0.3, 0.4, 0.5
COV 0.1, 0.3, 0.5, 1.0
θ/H 0.1, 0.2, 0.5, 1, 5, 10
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pre-processing of the available data, the determination of appropriate network architecture,
optimization of the connection weights (training), stopping criteria and model validation. In this
study, the ANN models are developed using the software NEUFRAME Version 4 [18]. The data
used to calibrate and validate the ANN model are obtained from the parametric studies performed
by the RFEM. There are a total of 1440 individual case records and each with a different
combination of input and output values.

Five parameters have a significant impact on the probability of failure (pf) of a heterogenous
cohesive slope. They are the slope angle (β), depth factor (D), stability number (Ns), COV and
normalised scale of fluctuation (θ/H). These five parameters are used as the input variables for the
ANN model. The model output is therefore the probability of failure (pf). The range of each
parameter examined in the analyses that follow is given in Table II.

As cross-validation [11] is used as the stopping criteria in calibrating the ANN model, the data are
randomly divided into three sets: training, testing and validation. In total, 80% (i.e. 1152 case records)
of the data are used for model calibration and 20% (i.e. 288 case records) are used for model
validation. The calibration data are further divided into 70% (i.e. 806 case records) for the training set
and 30% (i.e. 346 case records) for the testing set. The data division for ANN model development is
illustrated in Figure 3.

When dividing the data, it is essential to ensure that the data used for training, testing and validation
represent the same statistical population, as recommended by Masters [19]. This is achieved by
randomly choosing several combinations of the training, testing and validation sets until three
statistically consistent data sets are obtained, as proposed by Shahin et al. [20]. The statistics of the
data used for the training, testing and validation sets are given in Table III, which includes
the mean, standard deviation, maximum, minimum and range. It can be seen that the data used for
the training, testing and validation are statistically consistent, which suggest that they represent
similar statistical populations.

Once the available data have been divided into their subsets, the input and output variables are pre-
processed by scaling them between 0.0 and 1.0 to eliminate their dimension and to ensure that all
variables receive equal attention during training [19]. A simple linear mapping of the variables’
extreme to the neural network’s practical extreme is adopted for scaling, as it is the most commonly
used method for this purpose [19]. For a variable, x, with a maximum and minimum values of xmax

and xmin, respectively, the scaled value, xn, is calculated as follows:

xn ¼ x� xmin

xmax � xmin
(7)
Table II. Summary of range for input and output variables.

Input/output variables Range

Slope angle (β) 14–45°
Depth factor (D) 1–3
Stability number (Ns) 0.1–0.5
Coefficient of variation (COV) 0.1–1.0
Normalised scale of fluctuation (θ/H) 0.1–10
Probability of failure (pf) 0–1

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
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Figure 3. Data division for artificial neural network model development.
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After establishing the required three data sets: training, testing and validation, the next step is to
‘train’ the ANN model. ‘Training’ involves repeatedly presenting a series of input/output pattern
sets to the network. The network gradually learns the input/output relationship by adjusting the
weights to minimise the error between the actual and predicted output patterns of the training sets.
Cross-validation using the testing data set is adopted as the stopping criteria for the ANN model to
avoid overfitting. The validation data sets are then used to assess the accuracy of the developed
ANN model using data that are not used for either training or testing.

The network architecture is determined using a trial-and-error approach in which the ANN models
are trained with different numbers of hidden layers and nodes. In this study, networks are developed
Table III. Input and output statistic for artificial neural network models.

Model variables
and data sets

Statistical parameters

Mean Standard deviation Minimum Maximum Range

Slope angle (β)

Training set 25.75 11.75 14.00 45.00 31.00
Testing set 25.97 11.98 14.00 45.00 31.00
Validation set 26.73 12.08 14.00 45.00 31.00

Depth factor (D)

Training set 1.98 0.82 1.00 3.00 2.00
Testing set 2.08 0.80 1.00 3.00 2.00
Validation set 1.95 0.81 1.00 3.00 2.00

Stability number (Ns)

Training set 0.29 0.14 0.10 0.50 0.40
Testing set 0.31 0.14 0.10 0.50 0.40
Validation set 0.31 0.14 0.10 0.50 0.40

Coefficient of variation (COV)

Training set 0.48 0.34 0.10 1.00 0.90
Testing set 0.46 0.32 0.10 1.00 0.90
Validation set 0.49 0.34 0.10 1.00 0.90

Dimensionless scale of fluctuation (θ/H)

Training set 2.87 3.69 0.10 10.00 9.90
Testing set 2.76 3.59 0.10 10.00 9.90
Validation set 2.65 3.53 0.10 10.00 9.90

Probability of failure (pf)

Training set 0.301 0.413 0.000 1.000 1.000
Testing set 0.268 0.394 0.000 1.000 1.000
Validation set 0.276 0.397 0.000 1.000 1.000

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
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with one and two hidden layers, and 2, 4, 6, 8, 10 and 12 nodes in each layer. It should be noted that an
equal number of nodes is used in each hidden layer for the two hidden layers models. The tanh and
sigmoid transfer functions are used in the hidden and output layers, respectively. Other internal
parameters such as the learning rate and momentum term are fixed at the software’s default values,
that is, learning rate = 0.2 and momentum term=0.8. The effect of varying the learning rate and
momentum term on the performance of ANN models is also investigated.

The performance of the developed ANN models with different numbers of hidden layers and nodes
is summarized in Table IV. The ANN models developed in this study are designated by the names ‘A1’
to ‘A12’. The performance of the ANN models is measured by three standard performance measures:
the correlation coefficient (r), the root mean square error (RMSE) and the mean absolute error (MAE).
It should be noted that models that perform better are ones with a higher value of r and a lower value of
RMSE and MAE. It can be seen from Table IV that models with two hidden layers generally perform
better than the models with one hidden layer, except for Model A7, which has only two nodes in each
hidden layer. It is also observed that models with a larger number of hidden layer nodes perform better
than the models with a lesser number of nodes in the hidden layers.

The effect of the number of hidden layers and nodes on the performance of ANN models for the
validation data is plotted in Figure 4. It can be seen that the performance of the ANN models
improves significantly when the number of hidden layer nodes increases from two to six. However,
the improvement is minimal when the hidden layer nodes further increases from 6 to 12. Figure 4
also shows that the ANN models with two hidden layers perform better than the models with only
one hidden layer when there are six or more nodes in the hidden layer. Increasing the number of
hidden layers has less impact for models with two and four nodes in the hidden layer.

Based on the results shown in Table IV, the optimum ANN model can be determined. According to
Shahin and Jaksa [21], a model is deemed to be optimal if it combines three attributes: (i) the model
provides good performance with respect to the testing set; (ii) the model has a minimum number of
hidden layers and nodes; and (iii) the model has consistent performance on the validation set with
that obtained on the training and testing sets. Based on the computed values of r, RMSE and MAE
of the developed ANN models, Model A12 appears to be the optimum model. However, Model A12
has two hidden layers with 12 nodes in each layer, which become impractical to transform into
formulae. This is because a total of 25 equations are required to describe the relationship between
the input and output variables. Therefore, for the purpose of developing a set of practical equations,
Model A3 is considered to be optimal. Model A3 has one hidden layer with six nodes, which
requires only eight equations to describe the relationship between the input and output variables. It
should be noted that the relative error between the Model A3 and A12 for the correlation coefficient
Table IV. Performance of artificial neural network models with different number of hidden layers and nodes.

Model
no.

No. of
hidden
layers

No. of
hidden
nodes

Performance measures

r RMSE MAE

T S V T S V T S V

A1 1 2 0.971 0.970 0.972 0.100 0.097 0.094 0.051 0.049 0.051
A2 1 4 0.988 0.982 0.982 0.064 0.074 0.075 0.028 0.033 0.034
A3 1 6 0.992 0.987 0.988 0.053 0.064 0.062 0.024 0.029 0.030
A4 1 8 0.994 0.988 0.989 0.046 0.061 0.059 0.021 0.027 0.026
A5 1 10 0.996 0.991 0.990 0.036 0.052 0.056 0.015 0.021 0.024
A6 1 12 0.996 0.991 0.990 0.038 0.054 0.058 0.015 0.023 0.024
A7 2 2 0.969 0.961 0.967 0.103 0.111 0.102 0.054 0.057 0.054
A8 2 4 0.990 0.983 0.983 0.059 0.073 0.073 0.029 0.034 0.036
A9 2 6 0.999 0.994 0.995 0.021 0.045 0.038 0.009 0.017 0.016
A10 2 8 0.998 0.998 0.996 0.024 0.028 0.034 0.010 0.013 0.014
A11 2 10 0.998 0.995 0.996 0.025 0.040 0.037 0.010 0.017 0.016
A12 2 12 0.999 0.996 0.996 0.022 0.035 0.035 0.009 0.015 0.014

T = training; S = testing and V= validation.
RMSE, root mean square error; MAE, mean absolute error.
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Figure 4. Effect of the numbers of hidden layers nodes on correlation coefficient (r) for the validation data
set of artificial neural network models A1–A12 (learning rate = 0.2; momentum term=0.8).
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(r) is less than 1%, which is negligible. The details of transforming Model A3 into a set of practical
equations for predicting the probability of failure of a heterogenous cohesive slope is described later.

The effect of the learning rate and momentum term on the performance of the ANN models is
investigated by varying these two parameters within the range of 0.01–0.95 (i.e. 0.01, 0.1, 0.2, 0.4,
0.6, 0.8, 0.9 and 0.95). The number of hidden layers and nodes are fixed at 1 and 6, respectively,
which has the same network architecture to that of Model A3, as previously shown in Table IV.
Figures 5 and 6 show the effect of varying the learning rate and momentum term on the correlation
coefficient (r) for the validation data set, respectively. It can be seen from both Figures 5 and 6 that
the effect of varying the learning rate and momentum term on model performance is not as
significant as varying the number of hidden layers and nodes. It is found that the optimum learning
rate = 0.2 and momentum term=0.8, which are the software’s default values.
5. DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODEL EQUATIONS

One of the aims of this study is to develop a simple input/output relationship that can be used for predicting
the reliability of a heterogeneous cohesive slope. ANNs have been successfully used to develop
Figure 5. Effect of the learning rate on correlation coefficient (r) for the validation data set of the artificial
neural network model A3 (momentum term=0.8).
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Figure 6. Effect of the momentum term on correlation coefficient (r) for the validation data set of the artifi-
cial neural network model A3 (learning rate = 0.2).
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mathematical equations for predicting complex behaviour of geotechnical problems (e.g. [17, 21, 22]).
More recently, another modelling procedure called evolutionary polynomial regression has also
been demonstrated that is capable of developing mathematical expressions for reproducing the
performance and behaviour of complicated systems (e.g. [23–25]). These studies have
demonstrated that mathematical equations developed using ANNs and evolutionary polynomial
regression generally performed better than the available empirical formulae.

It has been determined that Model A12, which has two hidden layers with 12 hidden nodes in each
hidden layer, is the most accurate ANN model. However, as discussed previously, translating this ANN
model into simple equations becomes impractical because of the large number of hidden layers and
nodes. The use of this ANN model for predicting the probability of failure (pf) of a cohesive slope is
therefore limited to those users who have access to neural network software, such as NEUFRAME.

For the purpose of developing a relatively simple equation that can be used for predicting the
probability of failure (pf) of a heterogeneous cohesive slope, Model A3 is considered suitable.
Model A3 has one hidden layer with six nodes and performs reasonably well, although not as well
as Model A12. However, considering the large uncertainties in estimating soil properties, the
difference in accuracy between Models A3 and A12 is considered acceptable. The structure of
Model A3 is shown in Figure 7, and its connection weights and biases are shown in Table V.

Using the connection weights and biases shown in Table V, and with the input and output variables
being rescaled using Eqn (7), the predicted probability of failure can be expressed as follows:

pf ¼
1

1þ eA
(8)

where:

A ¼ 0:929þ 5:343 tanhH1 þ 5:905 tanhH2 þ 4:327 tanhH3 þ 2:126 tanhH4

� 3:227 tanhH5 � 3:120 tanhH6
(9)

H1 ¼ 0:175 – 1:386β þ 0:936Dþ 6:08Ns þ 3:14COV þ 1:006 θ=Hð Þ (10)

H2 ¼ �0:943 þ 0:217β þ 0:227Dþ 5:689Ns– 4:667COV– 2:092 θ=Hð Þ (11)

H3 ¼ 0:642 – 2:937β– 0:719Dþ 3:673Ns– 2:058COV– 1:68 θ=Hð Þ∣ (12)

H4 ¼ 0:846 – 0:682β– 3:259Dþ 0:573Ns– 0:916COV– 0:887 θ=Hð Þ (13)

H5 ¼ � 0:099 þ 1:136β þ 1:761D– 4:868Ns þ 0:416COV– 5:032 θ=Hð Þ (14)
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2016; 40:1556–1569
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Figure 7. Structure of the artificial neural network model A3. COV, coefficient of variation.
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H6 ¼ 0:152 þ 0:06β þ 0:56D– 4:715Ns þ 0:177COV– 0:792 θ=Hð Þ (15)

It should be noted that the predicted probability of failure (pf ) obtained from Eqn (8) is scaled
between 0.0 and 1.0, and in order to obtain the actual value, this pf needs to be re-scaled using Eqn
(7) and the data ranges in Table II. However, because the data range for pf is also between 0.0 and
1.0, Eqn (8) remains unchanged. It should also be noted that, before using Eqns (10) to (15), all
input variables (i.e. β, D, Ns, COV and θ/H) need to be scaled between 0.0 and 1.0 using Eqn (7)
and the data ranges in Table II. Accounting for this, Eqns (10) to (15) are hence rewritten as follows:

H1 ¼ 1:494 – 0:045β þ 0:468Dþ 15:2Ns þ 3:489COV þ 0:102 θ=Hð Þ (16)

H2 ¼ �2:037 þ 0:007β þ 0:114Dþ 14:223Ns– 5:185COV– 0:211 θ=Hð Þ (17)

H3 ¼ 1:656 – 0:095β– 0:36Dþ 9:183Ns– 2:287COV– 0:17 θ=Hð Þ (18)

H4 ¼ 2:752 – 0:022β– 1:63Dþ 1:433Ns– 1:018COV– 0:09 θ=Hð Þ (19)
Table V. Weights and biases for the artificial neural network Model A3.

Hidden layer
nodes

wji (weight from node i in the input layer to node j in the hidden layer) Hidden layer
bias(θj)

i= 1 i = 2 i = 3 i= 4 i = 5

j= 6 �1.386 0.936 6.080 3.140 1.006 0.175
j= 7 0.217 0.227 5.689 �4.667 �2.092 �0.943
j= 8 �2.937 �0.719 3.673 �2.058 �1.680 0.642
j= 9 �0.682 �3.259 0.573 �0.916 �0.887 0.846
j= 10 1.136 1.761 �4.868 0.416 �5.032 �0.099
j= 11 0.060 0.560 �4.715 0.177 �0.792 0.152

Output layer
nodes

wji (weight from node i in the input layer to node j in the hidden layer)
Output layer

bias(θj)i= 6 i = 7 i = 8 i= 9 i = 10 i= 11

j= 12 �5.343 �5.905 �4.3266 �2.126 3.227 3.120 �0.929
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H5 ¼ �0:271 þ 0:037β þ 0:881D– 12:17Ns þ 0:462COV– 0:508 θ=Hð Þ (20)

H6 ¼ 1:012 þ 0:002β þ 0:28D– 11:788Ns þ 0:197COV– 0:08 θ=Hð Þ (21)

It should be noted that Eqn (8) is valid only for the ranges of values of β, D, Ns, COV and θ/H
previously given in Table II. This is because ANN models perform best for interpolation rather than
extrapolation [26, 27]. The developed ANN equations, that is, Eqns (8) and (16)–(21), can therefore
be used as an alternative method to the RFEM for predicting the probability of failure of a
heterogeneous cohesive slope.

To assess the accuracy of the developed equations, five predictions are performed, and the predicted
probability of failure (pf) is compared with that predicted by ANN Model A3 as summarized in
Table VI. It is observed that the predictions performed by the developed equations are very close to
those obtained from ANN Model A3. Further predictions are also performed using all the 288
validation data, and the correlation coefficient (r) between the predictions obtained from the
developed equations and ANN Model A3 is 0.992, which further confirms that the developed
equations provide almost identical predictions to those obtained from the ANN model.
6. SENSITIVITY ANALYSES OF THE ARTIFICIAL NEURAL NETWORK MODEL INPUTS

In an attempt to determine the relative importance of the various input variables, a sensitivity analysis
was carried out on the ANNModel A3. This is achieved by using the method proposed by Garson [28],
which has been previously adopted by other researchers (e.g. [17, 29]) for the same purpose. This
method involves partitioning the hidden-output connection weights of each hidden node into
components associated with each input node. As mentioned previously, Model A3 incorporates five
input nodes, one hidden layer with six nodes and one output node. The connection weights were
previously shown in Table V and they are rewritten as follows:
Hidden nodes β D Ns COV θ/H pf

1 �1.386 0.936 6.080 3.140 1.006 �5.343
2 0.217 0.227 5.689 �4.667 �2.092 �5.905
3 �2.937 �0.719 3.673 �2.058 �1.680 �4.327
4 �0.682 �3.259 0.573 �0.916 �0.887 �2.126
5 1.136 1.761 �4.868 0.416 �5.032 �3.227
6 0.060 0.560 �4.715 0.177 �0.792 �3.120
The computation process proposed by Garson [28] is as follows:

1. For each hidden node i, obtain the products Pij (where j represents the column number of the
weights mentioned earlier) by multiplying the absolute value of the hidden-output layer connec-
tion weight by the absolute value of the hidden-input layer connection weight of each input
variable j. As an example: P11 = 1.386×5.343=7.405.
Hidden nodes β D Ns COV θ/H

1 7.405 5.001 32.485 16.777 5.375
2 1.281 1.340 33.594 27.559 12.353
3 12.708 3.111 15.893 8.905 7.269
4 1.450 6.929 1.218 1.947 1.886
5 3.666 5.683 15.709 1.342 16.238

6 0.187 1.747 14.711 0.552 2.471
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2. For each hidden node, divide Pij by the sum of all the input variables to obtain Qij. As an
T

Case

1
2
3
4
5

ANN,

Copyri
example: Q11=7.405/(7.405+5.001+32.485+16.777+5.375) =0.110.
Hidden nodes β D Ns COV θ/H

1 0.110 0.075 0.485 0.250 0.080
2 0.017 0.018 0.441 0.362 0.162
3 0.265 0.065 0.332 0.186 0.152
4 0.108 0.516 0.091 0.145 0.140
5 0.086 0.133 0.368 0.031 0.381
6 0.010 0.089 0.748 0.028 0.126
3. For each input node, sum Qij to obtain Sj. As an example:

S1 ¼ 0:110 þ 0:017 þ 0:265 þ 0:108 þ 0:086 þ 0:010 ¼ 0:596:
β D Ns COV θ/H

Sum 0.596 0.895 2.465 1.003 1.041
4. Divide Sj by the sum of all the input variables to obtain the relative importance of each

output weight attributed to the selected input variable. As an example, the relative im-
portance of input node 1 is equal to:
0:596�100ð Þ = 0:596 þ 0:895 þ 2:465 þ 1:003 þ 1:041ð Þ ¼ 9:9%
β D Ns COV θ/H

elative importance (%) 9.9 14.9 41.1 16.7 17.4
R
The results indicate that the stability number (Ns) has the most significant effect on the predicted
probability of failure (pf) with a relative importance of 41.1%. This is followed by the normalised
scale of fluctuation (θ/H) and the COV with a relative importance of 17.4% and 16.7%, respectively.
The slope geometry parameters: depth factor (D) and slope angle (β) have relatively small influence
on pf, with a relative importance of 14.9% and 9.9%, respectively. It should be noted that Ns is the
mean undrained shear strength (cu) normalised by the unit weight and slope height. Furthermore,
θ/H and COV are parameters used to model the spatial variability of cu. Therefore, the sensitivity
analysis suggests that spatial variability of soil properties has a more significant impact on the
reliability of a heterogeneous slope than the slope geometry parameters for the geometries
examined in the present analysis.
able VI. Comparison of predictions obtained from the ANN model and the developed equations.

β D Ns COV θ/H pf

ANN model Developed equations

14 3 0.2 0.1 0.2 0.0000 0.0000
18.4 3 0.3 0.5 5 0.0131 0.0132
26.6 1 0.3 1 10 0.2747 0.2988
45 2 0.2 1 5 0.7281 0.7324
45 3 0.1 0.1 0.1 1.0000 0.9997

artificial neural network.
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7. SUMMARY AND CONCLUSIONS

This paper has investigated the feasibility of using ANNs as a meta-model of the RFEM and Monte
Carlo simulation for predicting the probability of failure (pf) of a heterogeneous cohesive slope.
MLPs trained with the back-propagation algorithm were used in this study. The data used for the
ANN model development and validation were obtained from parametric studies conducted using the
RFEM and Monte Carlo simulation. A total of 1440 case records were used, and they were divided
into three separate data sets: training, testing and validation. The training and testing sets were used
for model development or calibration, while the validation set was used solely for model validation.

The optimum ANN model was determined using a trial-and-error approach where the number of
hidden layers and nodes was varied. The performance of the developed ANN models was measured
by three standard performance measures: correlation coefficient (r), RMSE and the MAE. It was
found that the number of hidden layers and nodes has a significant effect on the performance of
the ANN models. The ANN model with two hidden layers and 12 nodes in each hidden layer
was found to be the most accurate model with an r of 0.996 for the validation data set. It was
also found that the internal network parameters, such as the learning rate and momentum term,
have less impact on ANN model performance when compared with the number of hidden layers
and nodes.

A simple equation was developed based on the ANN model with one hidden layer and six nodes,
which can be used to predict the probability of failure (pf) of a heterogeneous cohesive slope. This
equation can be used as an alternative meta-model to the more advanced but computationally
intensive approach of the RFEM. It is worthwhile noting that predictions from ANN models are
more reliable when used for ranges of input variables similar to those utilized in model training.
This is because ANNs perform best when interpolating rather than in extrapolation. The sensitivity
analysis of the ANN model inputs indicated the stability number (Ns) was the most important
parameter with a relative importance of 41.1%. The other parameters ranked in the order of most to
least important were θ/H, COV, D and β. Finally, for the geometries examined in the present
analysis, it has been observed that the spatial variability of the soil properties has a more profound
effect on the reliability of a heterogeneous slope than the slope geometry parameters.
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