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This paper presents an approach for reliability analysis of engineering structures, referred to as
Metamodel Line Sampling (MLS). The approach utilizes a metamodel of the performance function, within
the framework of the Line Sampling method, to reduce computational demands associated with the
reliability analysis of engineering structures. Given a metamodel of the performance function, the failure
probability is estimated as a product of a metamodel-based failure probability and a correction coeffi-
cient. The correction coefficient accounts for the error in the metamodel estimate of failure probability
introduced by the replacement of the performance function with a metamodel. Computational efficiency
and accuracy of the MLS approach are evaluated with the Kriging metamodel on analytical reliability
problems and a practical reliability problem of a monopile foundation for offshore wind turbine. The
MLS approach demonstrated efficient performance in low to medium-dimensional reliability problems.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Reliability analysis is performed to address the inherent ran-
domness of structural parameters and a lack of knowledge about
the driving processes defining the behavior of structures. A pri-
mary interest in reliability analysis of structures is to evaluate
the probability of unsafe or undesired state of the structure, i.e.,
failure probability, PF . Given an n-dimensional vector of random
variables affecting the performance of a structure,

Z ¼ Z1; . . . ; Zn½ �T 2 X, in the variable space X, associated with the
joint probability density function (pdf), f ZðzÞ; PF is defined as:

PF ¼ PðZ 2 FÞ ¼
Z
F
f ZðzÞdz ¼

Z
Rn

IFðzÞf ZðzÞdz ð1Þ

where z 2 Rn denotes a realization of Z; F is the failure domain, IF is
an indicator function such that IFðzÞ ¼ 1 if z 2 F and IFðzÞ ¼ 0 other-
wise. In this study, Z is defined as a vector of independent standard
normal random variables with the joint pdf /Z, in the standard nor-
mal space X. In the case of a general random vector X, composed of
non-normal and dependent random variables, it is assumed that a
probability preserving transformation, Z ¼ HX;ZðXÞ (e.g., Nataf [7])
exists. It is worth noting that the transformations to the standard
normal space are often approximate and can introduce additional
nonlinearities in the shape of the failure domain.

The state of a structure or an engineering system is commonly
evaluated by a so-called performance function, gðzÞ. gðzÞ plays a
central role in the reliability analysis of structures, because it sep-
arates the n-dimensional variable space X into a safe gðzÞ > 0, and
an unsafe domain z 2 F � Rn : gðzÞ 6 0f g by the hypersurface
denoted as the failure limit state z 2 L : gðzÞ ¼ 0f g. In the majority
of applications gðzÞ is an implicit function of the random structural
parameters, z, (e.g., finite element model). The implicit formulation
of the performance function introduces constraints on the applica-
ble mathematical tools for the evaluation of PF , as often only point-
wise evaluations of the performance function and its gradients are
obtainable.

Analytical solutions of PF are achievable only for a limited group
of problems with explicit formulations of gðzÞ and simple defini-
tions of failure domains. In reliability analysis of structures, PF is
often evaluated numerically by employing optimization (e.g., First
and Second Order Reliability Method) or sampling methods (e.g.,
Monte Carlo, Importance Sampling, Subset Simulation) [22].
Among these, the Monte Carlo (MC) method is widely used due
to its straightforward implementation and robust performance
[22]. The MC method is based on drawing N independent identi-
cally distributed (i.i.d.) samples zi � /ZðzÞ; i ¼ 1; . . . ;N and evalu-
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ating gðziÞ at these samples. The unbiased estimate of the failure

probability, P̂F , is calculated as the ratio of the number of failed
samples, NF , over the total number of samples, N:
P̂F ¼ 1
N

XN
i¼1

IFðziÞ ¼ NF

N
ð2Þ
where NF is binomial distributed random variable, which leads to

the coefficient of variation of P̂F ;CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� P̂FÞ=ðP̂FNÞ

q
. Inves-

tigation of the CoVðP̂FÞ reveals that the P̂F is independent of the
dimensionality of the problem in the MC method, and that the

CoVðP̂FÞ reduces with increasing N. For a small P̂F , a relatively large

N is necessary to obtain a reasonably low CoVðP̂FÞ. Large numbers of
simulations of gðzÞ are frequently infeasible to execute as the mod-
els used to evaluate gðzÞ can be computationally demanding.
Although the MC method is accurate, robust and independent of
the dimensionality of the reliability problem, the method is consid-
ered to be inefficient when evaluating small PF and/or when com-
putationally intensive structural models are used to evaluate the
performance function.

The previously mentioned inefficiency of the MC method has
led to the development of various methods suited for the estima-
tion of small PF in probabilistic analysis of structures. The Impor-
tance Sampling (IS) method, based on the MC approach,
introduces an importance pdf with a relatively high density over
the failure domain of the variable space (e.g., [2]). By sampling

the importance pdf, the IS method can provide P̂F with reduced
computational expense when compared to the MC method [22].
A series of benchmark tests conducted in [22] showed that the IS
approach is applicable in low to medium-dimensional problems
(n < 100) with efficiency and accuracy dependent on the imple-
mentation of the method. The Line Sampling (LS) method, based
on the IS approach, evaluates PF by a number of conditional one-
dimensional reliability problems along an important direction,
which points to the failure domain nearest to the origin of X
[22]. Benchmark tests in [22] showed high accuracy and efficient
performance of the LS method in high-dimensional problems.

An alternative method for estimating PF in high-dimensional
problems is the Subset Simulation (SS) method [1]. In the SS
method, PF is expressed as a product of a series of conditional fail-
ure probabilities corresponding to, prior to the analysis, unknown
intermediate failure limits. The conditional failure probabilities can
be selected to be relatively high (e.g., P ¼ 0:1), requiring conse-
quently a small number of samples to be evaluated accurately.

Reductions in computational demands associated with the reli-
ability analysis of engineering structures can be also achieved by
replacing gðzÞ with a computationally less expensive metamodel
~gðzÞ. Metamodels are commonly built by implementing statistical
learning methods [12] (e.g., Neural Networks [20], Support Vector
Machines [3,13], regression, or Kriging [8]) on a set of observations
of gðzÞ in the variable space. Several metamodel implementations
showed high efficiency and accuracy in low to medium-
dimensional problems (n < 100) (e.g., [8,3]).

An approach which aims at reducing computational cost com-
monly associated with the reliability analysis, referred to as Meta-
model Line Sampling (MLS), is presented in this study. The MLS
approach combines the efficiency of the LS method with a rela-
tively low computational cost of ~gðzÞ to provide reductions in com-
putational expenses. Given ~gðzÞ; PF is evaluated as a product of a
metamodel-based failure probability and a correction coefficient.
The correction coefficient accounts for the uncertainty in the
metamodel-based failure probability, resulting from the replace-
ment of gðzÞ with ~gðzÞ. The performance of the MLS approach is
evaluated on analytical reliability problems and a practical reliabil-
ity problem of a monopile foundation for offshore wind turbine.

2. Metamodel Line Sampling

2.1. Line Sampling

LS is a method which formulates a reliability problem as a num-
ber of conditional one-dimensional reliability problems in the
standard normal space [21]. The formulation of the LS method is
based on the assumption that an important direction, a, can be
approximated. a points to the region of the failure domain nearest
to the origin of X, as illustrated in Fig. 1. An MC estimate of PF is
calculated based on a number of conditional one-dimensional reli-
ability problems along a. The one-dimensional reliability problems
are conditioned on the MC samples from the ðn� 1Þ-dimensional
standard normal space of random variables orthogonal to a. Based
on the set of benchmark tests [21], it is reported that the LS
method has a wide range of applications in reliability analysis of
structures, except for strongly nonlinear performance functions
where a cannot be estimated.

Given a, the failure domain, F, can be expressed as shown in
[21]:

F ¼ z 2 Rn : za 2 Faðz?1 ; . . . ; z?n�1Þ
� � ð3Þ

where za is a realization of the random variable, Za, which is defined
along a; z? 2 Rn�1 is a realization of a vector of random variables
orthogonal to a, denoted as Z?, while Fa is a function representing
the failure domain along a, defined on Rn�1 [21]. Then PF can be
expressed as:

PF ¼
Z
Rn

IFðzÞ/ZðzÞdz ¼ Ez? UðFaðz?ÞÞ
� � ð4Þ

In the case that Faðz?Þ lies within the half open interval ½bðz?Þ;1Þ,
the one-dimensional conditional failure probability can be evalu-
ated as UðFaðz?ÞÞ ¼ Uð�bðz?ÞÞ, where bðz?Þ is a ‘reliability index’,
as indicated in Fig. 1. An unbiased estimate of PF is calculated on
a set of samples z?i � /Z? ðz?Þ : i ¼ 1; . . . ;N

� �
as:

P̂F ¼ 1
N

XN
i¼1

UðFaðz?i ÞÞ ¼
1
N

XN
i¼1

Uð�bðz?i ÞÞ ¼
1
N

XN
i¼1

PFi ð5Þ

where PFi ¼ Uð�bðz?i ÞÞ. Variance of the estimator P̂F is estimated as:

VarðP̂FÞ ¼ 1
NðN � 1Þ

XN
i¼1

PFi � P̂F

� �2
ð6Þ

Coefficient of variation of P̂F , defined as CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP̂FÞ

q
=P̂F ,

is commonly used as a convergence measure of P̂F .

2.2. Metamodel-based failure probability

As discussed in Section 1, reliability analysis of structures can
be a computationally intensive and time consuming task. One of
the approaches to reduce the computational demands is to approx-
imate gðzÞ with a computationally less expensive metamodel, ~gðzÞ.
A metamodel is commonly constructed by implementing statistical
learning methods on a set of observations of gðzÞ obtained with an
information gathering process known as Design of Experiments
(DoE) (e.g., Latin Hypercube Sampling). Some of the early
metamodels employed first- and second-order polynomials to
approximate the limit state in the proximity of the design point
(i.e., the most probable point at the limit state) (e.g., [4]). More



Fig. 1. Line Sampling method.
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recent applications of metamodels are based on Neural Networks
(e.g., [19]), Support Vector Machines (e.g., [3]), and Kriging meta-
models (e.g., [8]).

An estimate of the metamodel failure probability, P~F , is obtained
by coupling a metamodel with a reliability method (e.g., [3,8]). An
LS formulation of P~F , based on ~gðzÞ in X, is defined as:

P~F ¼
Z
Rn

I~FðzÞ/ZðzÞdz ¼ Ez ~? UðF~aðz ~?ÞÞ
h i

ð7Þ

where I~F is an indicator function defined by ~gðzÞ; ~a is an important

direction determined by ~gðzÞ; z ~? 2 Rn�1 is a vector of random vari-
ables orthogonal to ~a, while F~a is the function in Eq. (3) defined with

respect to ~a. With gðzÞ replaced by ~gðzÞ, as illustrated in Fig. 2, P̂~F

and VarðP̂~FÞ can be calculated according to Eqs. (5) and (6). In this
study ~a is approximated with a since the goal of a metamodel is
to provide a good approximation of the limit state in the proximity
of the important direction. However, it is worth noting that
although the metamodel might provide a good approximation of
the limit state, ~a does not necessarily need to be close to a.

2.3. Correction coefficient

Although some metamodels can provide an error estimate to
quantify the epistemic uncertainty associated with the metamodel
(e.g., Kriging prediction variance), this measure cannot quantify the
overall error resulting from replacing gðzÞ with ~gðzÞ. This problem
was recognized in [8], where a correction coefficient, defined as a
ratio of PF and P~F , is implemented in the Kriging-based importance
sampling. The correction coefficient in [8] is estimated by sampling
a ratio of the indicator function and a Kriging-based probabilistic
classification function on samples from an importance sampling
distribution.

In this study, a metamodel independent correction coefficient,
j, is implemented to quantify the error resulting from substituting
gðzÞ with ~gðzÞ. j is formulated by considering the probability of a
union of two events:

PðF [ ~FÞ ¼ PðFÞ þ Pð~FÞ � PðF \ ~FÞ ð8Þ
where F represents a failure event (domain) defined by gðzÞ, while ~F
is a failure event (domain) defined by ~gðzÞ. After rearranging Eq. (8),
j is formulated as a ratio of PF and P~F:
j ¼ PðFÞ
Pð~FÞ ¼

PðF [ ~FÞ
Pð~FÞ þ

PðF \ ~FÞ
Pð~FÞ � 1 ð9Þ

j is dependent on two terms denoted as jU and jI:

j ¼ 1
jU
þ jI � 1 ð10Þ

where

jU ¼ Pð~FÞ
PðF [ ~FÞ ; 0 6 jU 6 1 ð11Þ

jI ¼ PðF \ ~FÞ
Pð~FÞ ; 0 6 jI 6 1 ð12Þ

Given a relatively accurate metamodel approximation of the
limit state function it follows that jU � 1 and jI � 1, which leads
to j � 1. The definition of j is not metamodel dependent which
means that it can be integrated in various metamodel-based
approaches for reliability analysis to quantify the error introduced
by substituting gðzÞ with ~gðzÞ.

An expression for jU is formulated by introducing an
importance distribution hF[~FðzÞ in the integral which defines Pð~FÞ:

Pð~FÞ ¼
Z
Rn

I~FðzÞ/ZðzÞdz ¼
Z
Rn

I~FðzÞ/ZðzÞ
hF[~FðzÞ

hF[~FðzÞdz ð13aÞ

where hF[~FðzÞ is defined as a product of the indicator function

denoting union of events F and ~F; IF[~FðzÞ, and the joint pdf /ZðzÞ:

hF[~FðzÞ ¼
IF[~FðzÞ/ZðzÞR

Rn IF[~FðzÞ/ZðzÞdz
¼ IF[~FðzÞ/ZðzÞ

PðF [ ~FÞ ð13bÞ

With the hF[~FðzÞ in Eq. (13b) inserted in Eq. (13a), jU is defined
as:

jU ¼ Pð~FÞ
PðF [ ~FÞ ¼

Z
Rn

I~FðzÞ
IF[~FðzÞ

hF[~FðzÞdz ð13cÞ

An MC estimator of jU can be constructed by drawing samples
from hF[~FðzÞ and evaluating the ratio of the indicator functions I~FðzÞ
and IF[~FðzÞ. Due to an unknown value of the normalizing constant

PðF [ ~FÞ prior to a reliability analysis, a Markov Chain Monte Carlo
or a resampling method (e.g., [10]) can be used to draw samples
from hF[~FðzÞ.

At the fundamental level, the problem of estimating the failure
probability, PF ¼ E IFðzÞ½ �, is substituted with the problems of esti-
mating the correction coefficients jU and jI (the estimate of jI will
be discussed shortly). In the case of jU ¼ EhF[~F I~FðzÞ=IF[~FðzÞ

� �
, the

substitution will require a smaller sample size to be evaluated with
comparable accuracy if the event corresponding to jU is less rare
than the failure event, EhF[~F I~FðzÞ=IF[~FðzÞ

� �
P E IFðzÞ½ �. In the case of

a relatively accurate metamodel approximation of the limit state
jU � 1, which provides a potential to reduce the computational
demands commonly associated with the estimation of rare failure
events.

Due to the focus on the LS method, an LS estimator of jU is con-
structed in this study. Assuming that a can be estimated, a mar-
ginal distribution of hF[~FðzÞ in the ðn� 1Þ-dimensional standard

normal space orthogonal to a, denoted as h?F[~Fðz?Þ, can be defined

as presented in the example of h?F ðz?Þ in Appendix A. To implement
an LS estimator of jU , Eq. (13c) is formulated as:

jU ¼
Z
Rn�1

Z
R

I~FðzÞ
IF[~FðzÞ

hFa[~FaðzaÞdza
	 


h?F[~Fðz?Þdz? ð13dÞ



Fig. 2. Metamodel-based Line Sampling.
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where hFa[~Fa ðzaÞ is a distribution of random variables along a condi-

tioned on F [ ~F. For a given z?j � h?F[~Fðz?Þ : j ¼ 1; . . . ;NU

n o
, the one-

dimensional integral in Eq. (13d) is rewritten as:

jUðz?j Þ ¼ jUj ¼
Z
R

I~Fðza; z?j Þ
IF[~Fðza; z?j Þ

hFa[~Fa ðzaÞdza ð13eÞ

Based on a set of samples zak � h?Fa[~Fa ðzaÞ : k ¼ 1; . . . ;Na

n o
an MC

estimator of jUj can be defined as:

ĵUj ¼ 1
Na

XNa

k¼1

I~Fðzak; z?j Þ
IF[~Fðzak; z?j Þ

ð13fÞ

In the case that the failure domains, Faðz?Þ and ~Faðz?Þ, are specified
with the intervals ½bðz?Þ;1Þ and ½~bðz?Þ;1Þ respectively, an LS esti-
mator of jUðz?j Þ is defined:

ĵUj ¼
Uð�~bðz?j ÞÞ

U �min ~bðz?j Þ;bðz?j Þ
h i� � ð13gÞ

An estimate of jU is then calculated by solving the following
ðn� 1Þ-dimensional integral:

jU ¼
Z
Rn�1

jUðz?Þh?F[~Fðz?Þdz? ð13hÞ

A self-weighted importance sampling estimate of jU is
implemented to utilize the relation between h?F[~Fðz?Þ and the
ðn� 1Þ-dimensional standard normal distribution orthogonal to
a;/Z? ðz?Þ as shown in the example of h?F ðz?Þ in Appendix A. Given

a set of samples z?j � /Z? ðz?Þ : j ¼ 1; . . . ;NU

n o
, a set of weights,

wF[~Fðz?Þ can be calculated as presented in the example of h?F ðz?Þ
in Appendix A. A self-weighted importance sampling estimate of
jU is calculated as a weighted average:

ĵU ¼
XNU

j¼1
wF[~Fðz?j ÞĵUj ð13iÞ

Variance of ĵU is estimated as:

VarðĵUÞ ¼
XNU

j¼1
w2

F[~Fðz?j Þ � ĵUj � ĵU
� �2 ð13jÞ
Similar to jU , an expression for jI is formulated by introducing an
importance distribution h~FðzÞ into the integral defining PðF \ ~FÞ:

PðF \ ~FÞ ¼
Z
Rn

IF\~FðzÞ/ZðzÞdz ¼
Z
Rn

IF\~FðzÞ/ZðzÞ
h~FðzÞ

h~FðzÞdz ð14aÞ

where h~FðzÞ is defined as a product of the indicator function denot-

ing the event ~F; I~F , and the joint pdf /ZðzÞ:

h~FðzÞ ¼
I~F/ZðzÞR

Rn I~FðzÞ/ZðzÞdz
¼ I~F/ZðzÞ

Pð~FÞ ð14bÞ

With the h~FðzÞ in Eq. (14b) inserted in Eq. (14a), jI is defined as:

jI ¼ PðF \ ~FÞ
Pð~FÞ ¼

Z
Rn

IF\~FðzÞ
I~FðzÞ

h~FðzÞdz ð14cÞ

As discussed earlier, the problem of estimating the failure
probability, PF ¼ E IFðzÞ½ �, is substituted with the problems of esti-
mating the correction coefficients jU and jI . In the case of
jI ¼ Eh~F

IF\~FðzÞ=I~FðzÞ
� �

, the substitution will require a lower smaller
sample size to be evaluated with comparable accuracy if the event
corresponding to jI is less rare than the failure event,
Eh~F

IF\~FðzÞ=I~FðzÞ
� �

P E IFðzÞ½ �. In the case of a relatively accurate
metamodel approximation of the limit state jI � 1, which provides
a potential to reduce the computational demands commonly asso-
ciated with the estimation of rare failure events.

To implement an LS estimator of jI , Eq. (14c) is formulated as:

jI ¼
Z
Rn�1

Z
R

IF\~FðzÞ
I~FðzÞ

h~FaðzaÞdza
	 


h?~F ðz?Þdz? ð14dÞ

where h~Fa ðzaÞ is a distribution of random variables along a

conditioned on ~F, while h?~F ðz?Þ is a marginal distribution of h~FðzÞ
in the ðn� 1Þ-dimensional space orthogonal to a. For a

given z?j � h?~F ðz?Þ : j ¼ 1; . . . ;NI

n o
, the one-dimensional integral

in Eq. (14d) is rewritten as:

jIðz?j Þ ¼ jIj ¼
Z
R

IF\~Fðza; z?j Þ
I~Fðza; z?j Þ

h~Fa ðzaÞdza ð14eÞ

Based on a set of samples zak � h?~Fa ðzaÞ : k ¼ 1; . . . ;Na

n o
an MC esti-

mator of jIj can be defined as:

ĵIj ¼ 1
Na

XNa

k¼1

IF\~Fðzak; z?j Þ
I~Fðzak; z?j Þ

ð14fÞ

In the case that the failure domains, Faðz?Þ and ~Faðz?Þ, are specified
with the intervals ½bðz?Þ;1Þ and ½~bðz?Þ;1Þ respectively, an LS
estimator of jIðz?j Þ can be defined as:

ĵIj ¼
U �max ~bðz?j Þ;bðz?j Þ

h i� �
Uð�~bðz?j ÞÞ

ð14gÞ

An estimate of jI is then calculated by solving an
ðn� 1Þ-dimensional integral:

jI ¼
Z
Rn�1

jIðz?Þh?~F ðz?Þdz? ð14hÞ

A self-weighted importance sampling estimate of jI is developed to
utilize the relation between h?~F ðz?Þ and the ðn� 1Þ-dimensional
standard normal distribution orthogonal to a;/Z? ðz?Þ. Given a set

of samples z?j � /Z? ðz?Þ : j ¼ 1; . . . ;NI

n o
, a set of weights w~Fðz?Þ

can be calculated as presented in the example of h?F ðz?Þ in Appendix
A. A self-weighted importance sampling estimate of jI is calculated
as a weighted average:
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ĵI ¼
XNI

j¼1
w~Fðz?j ÞĵIj ð14iÞ

Variance of ĵI is estimated as:

VarðĵIÞ ¼
XNI

j¼1
w2

~F ðz?j Þ � ĵIj � ĵI
� �2 ð14jÞ

Given ĵU and ĵI and their respective variances, an approximate
value of ĵ and VarðĵÞ can be obtained as shown in Appendix B. A
first-order approximation of ĵ, which corresponds to substituting
jU and jI in Eq. (10) with their estimates, ĵU and ĵI , is shown in
Appendix B to be asymptotically unbiased and consistent estima-
tor. Provided with the estimate of the bias in Eq. (B.4), a bias-
correction term can be added to the first-order approximation of
ĵ as follows:

ĵ � 1
ĵU
þ ĵI � 1� VarðĵUÞ

ĵ3
U

ð15Þ

The estimator in Eq. (15) remains approximate since the bias-
correction term, VarðĵUÞ=ĵ3

U , is an approximation of the bias. Addi-
tionally, ĵ in Eq. (15) remains to be an asymptotically unbiased and
consistent estimator. As shown in Appendix B, the variance of the
estimator in Eq. (15) is evaluated as follows:

VarðĵÞ � VarðĵUÞ
ĵ4

U

þ VarðĵIÞ ð16Þ

The coefficient of variation of ĵ;CoVðĵÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĵÞ

p
=ĵ is used as a

measure of convergence of ĵ in this study.

2.4. MLS failure probability

The estimate of PF with the corresponding variance is derived
based on an unbiased estimate of the metamodel-based failure

probability, P̂~F and asymptotically unbiased estimate of the correc-

tion coefficient ĵ. The estimates P̂~F and ĵ are independent as they
are evaluated on samples from different distributions. The estimate
of PF then becomes:

P̂F ¼ P̂~F � ĵ ð17Þ
Given that P̂~F is an unbiased estimator and ĵ is asymptotically

unbiased estimator, P̂F is an asymptotically unbiased estimator.

Expressions for the corresponding variance, VarðP̂FÞ, and coefficient

of variation, CoVðP̂FÞ are derived in Appendix C. Since the values of

P̂~F and ĵ are usually calculated with relatively low CoVs (e.g.,

< 0:1), the CoVðP̂FÞ can be relatively accurately approximated as
shown in Appendix C:

CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CoV2ðP̂~FÞ þ CoV2ðĵÞ

q
ð18Þ
3. Metamodel

3.1. Design of experiments

A metamodel, ~gðzÞ, is constructed to approximate the functional
relationship between z and gðzÞ. In reliability analysis of structures
~gðzÞ is implemented to classify a combination of random structural
parameters as a safe or failure state of the structure with lower
computational expenses than gðzÞ. A metamodel can be built by
implementing interpolation, regression or classification methods
from the group of statistical learning methods [12] on a set of
pointwise evaluations of gðzÞ:
C ¼ zj; gðzjÞ
� �

; j ¼ 1; ::; S
� � ð19Þ

In reliability analysis of structures C is obtained through a
Design of Experiments (DoE), commonly initiated by a space-
filling DoE and updated by a model-based or an adaptive DoE.
The initial space-filling DoE attempts to gather the largest amount
of information to construct a metamodel by filling X. Common
approaches for the space-filling DoE include Monte Carlo sampling,
Latin Hypercube Sampling [17], Full factorial design [18], or
K-means clustering [8].

On the other hand, model-based or adaptive DoE utilizes infor-
mation provided by a model (e.g., structural model, metamodel) to
construct an optimal DoE. For example, several adaptive Kriging-
based DoEs were formulated on the information provided by the
Kriging variance (e.g., [8,14]).

A model-based DoE, adapted to the LS method, is implemented
in this study. Motivation for an LS based DoE (LS-DoE) stems from
the requirement that an efficient implementation of a metamodel
for reliability analysis requires accurate approximation of gðzÞ
around the limit state with a relatively low number of observa-
tions. The limitation in the number of observations is commonly
encountered due to computationally demanding structural models,
employed to generate observations, and a decrease in efficiency of
certain metamodels (e.g., Kriging) with an increase in the number
of observations. For these reasons, the LS-DoE is formulated as a
sampling strategy to select realizations of random parameters from
the variable space in the proximity of the limit state. The sampling
strategy for the LS-DoE is derived by expanding the concept of the
limit state with ‘artificial uncertainty’. In the expanded formula-
tion, the position of the limit state is assumed to be uncertain
and modeled with a pseudo random variable � � f �ð�Þ:
g0ðzÞ ¼ gðzÞ þ � ð20Þ

Similar to the LS method, the LS-DoE conducts a series of line
searches along a to locate the limit state defined by g0ðzÞ as illus-
trated in Fig. 3. The set of observations obtained with the LS-DoE
is specified as:

C ¼ zj; gðzjÞ
� �

: g0ðzjÞ ¼ 0; gðzjÞ ¼ ��j; j ¼ 1; . . . ; S
� � ð21Þ

� can be selected as a zero-mean random variable with the stan-
dard deviation on the magnitude of gðzÞ at the mean of X. This
enables the LS-DoE to focus observations of gðzÞ on the region
extending from around the limit state to the mean of X. The LS-
DoE can be adaptively updated during the metamodel training by
modifying the standard deviation of � to provide a varying resolu-
tion of observations around the limit state. For example, one can
stepwise reduce the standard deviation of � to adaptively increase
the number of observations in the proximity of the limit state. It is
expected that the LS-DoE can provide a comparable information for
an approximation of the limit state with a lower number of obser-
vations than a space-filling DoE due to its focus on observations in
the proximity of the limit state.

3.2. Kriging metamodel

In this study, a Kriging predictor is implemented as a meta-
model due to several efficient applications in the field of reliability
analysis (e.g., [8]). A relatively robust and numerically efficient
DACE MatlabTM Kriging toolbox [5] is employed to estimate Kriging
parameters and to predict values at unobserved locations.

In the Kriging predictor, the set of pointwise observations of
gðzÞ in Eq. (21) is interpreted as a realization of a Gaussian process
(e.g., [8]):

gðzÞ ¼ qðzÞTgþ UðzÞ ð22Þ
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which can be decomposed into a regression model defined by a set
of known functions q ¼ qr; r ¼ 1; . . . ;Rf g and unknown coefficients
g, and a zero-mean stationary Gaussian process UðzÞ. The zero-
mean stationary Gaussian process, U, specifies the covariance struc-
ture of the Gaussian process in Eq. (22), with variance r2

g , and a cor-
relation function q:

Cov gðz0Þ; gðz00Þf g ¼ r2
gqðz0; z00Þ; ðz0; z00Þ 2 X ð23Þ

A Gaussian correlation model is selected for q:

qðz0; z00Þ ¼ exp �
Xn
i¼1

ðz0i � z00i Þ2
h2i

 !
ð24Þ

where hi : i ¼ 1; . . . ; nf g is a set of parameters.
Given a realization, z0 2 Xf g, the Kriging predictor of gðz0Þ

based on the set of observations, C, is defined as a linear unbiased
predictor:

~gðz0Þ ¼
XS
j¼1

fjgðzjÞ ð25Þ

where f ¼ fj; j ¼ 1; . . . ; S
� �

is a set of unknown weights. The set of
unknown weights f is determined by minimizing the prediction
error variance:

f̂ ¼ argmin
f

Var gðz0Þ � ~gðz0Þf g ð26Þ

with respect to unbiasedness constraint:

E ~gðz0Þf g ¼ E gðz0Þf g ð27Þ
After estimating f̂, the prediction is calculated as:

~gðz0Þ ¼
XS
j¼1

f̂jgðzjÞ ð28Þ

with associated error variance:

r2
~g ¼ Var gðz0Þ � ~gðz0Þf g

¼ r2
g 1� 2

XS
j¼1

f̂jqðz0; zjÞ þ
XS
j¼1

XS
k¼1

f̂jf̂kqðzj; zkÞ
 !

ð29Þ

Details on the implementation of the Kriging predictor can be
found in various sources (e.g., [5]).

The accuracy of the predictor in Eq. (28) depends on the selec-
tion of q;g;r2

g and h. The set of functions, q, can be selected as an
optimal set of functions when performing regression analysis on
observations in Eq. (19). After determining the optimal regression
fit, g;r2

g , and hi : i ¼ 1; . . . ;nf g are calculated as maximum likeli-
hood estimates (MLEs) [5] on the set of observations in Eq. (19).
The error variance, r2

~g , is dependent on the number S and the loca-

tion of samples in Eq. (19). The value of r2
~g can be reduced by gen-

erating new pointwise observations of gðzÞ from the region of the
variable space where predictions are to be made.

4. MLS implementation

This section summarizes the implementation of the MLS
method. The flowchart in Fig. 4 illustrates the three main steps
of the MLS method. In the first step, a metamodel of gðzÞ is trained
according to the Algorithm 1. Once the metamodel is trained, the
metamodel-based failure probability P~F and the correction coeffi-
cient, j, are evaluated by two independent steps defined according
to Algorithms 2 and 3 respectively. Finally, PF is calculated as a pro-
duct of the estimates of P~F and j.
The implementation of the MLS method is initiated with the
metamodel training based on the LS-DoE, as presented in Algo-
rithm 1. The implementation of the LS-DoE requires the important
direction, a, to be specified. For example, a can be approximated by
a gradient vector of gðzÞ pointing in the direction of steepest des-
cent. In [16] a was determined as a unit vector which points to a
set of samples generated with the Markov Chain Monte Carlo
method from the distribution of random variables conditioned on
the failure event, hðzÞ ¼ IFðzÞf ZðzÞÞ=PF . Alternatively, Adaptive Line
Sampling method [6] can be implemented, where an initial crude
estimate of a is updated during the reliability analysis to converge
to a near optimal a.

As presented in Algorithm 1, a metamodel is stepwise refined
with S observations, generated by the LS-DoE, until maximum
number of refinement steps, NS, is achieved or convergence of j
within the bounds jmin and jmax occurs. A relatively accurate esti-
mate of j, according to Algorithm 3, can present a computationally
demanding task at early stages of the metamodel refinement. For
this reason, a relatively low number of samples, Nt

j > 50, is used
during the metamodel refinement to obtain a relatively crude esti-
mate of j. The refinement procedure is conducted until PF and P~F

are within less than one order of magnitude, which corresponds
to jmin P 0:1 and jmax 6 10. As discussed in Section 3.1, � can be
selected as a zero-mean random variable with standard deviation
on the magnitude of gðzÞ at the mean.

Algorithm 1 Metamodel training

1: Define a;NS;N
t
j; S;jmin;jmax; f �ð�Þ

2: Initiate i 0
3: while i < NS & jmin 6 ĵ 6 jmaxf g do
4: i iþ 1
5: j ði� 1Þ � S
6: while ði� 1Þ � S 6 j < i � S do
7: j jþ 1
8: z?j � Nð0; In�1Þ . In�1 is an identity matrix of

size ðn� 1Þ
9: �j � f �ð�Þ
10: Solve gðabj þ z?j Þ þ �j ¼ 0 for bj . Performance

function line search
11: zj  abj þ z?j , gðzjÞ  ��j . Update DoE

12: end while
13: Train ~gðzÞ on C ¼ zk; gðzkÞð Þ; k ¼ 1; . . . ; jf g
14: Evaluate ĵ according to Algorithm 3 with Nmax

j ¼ Nt
j

15: end while
16: return ~gðzÞ
Once ~gðzÞ is trained, P~F and j can be estimated according to
Algorithms 2 and 3 respectively. Since Algorithms 2 and 3 are inde-
pendent, the estimates of P~F and j can be calculated in parallel to
optimize computational efforts.

Assuming that ~gðzÞ approximates the limit state reasonably
well, a specified for Algorithm 1 can be used for the LS estimate
of P~F . Additionally, the implementation of Algorithm 2 requires
the specification of the limitations in the number of line searches

for the LS estimate of P~F ;N
min
PF

and Nmax
PF

, together with the target

coefficient of variation, s~F . Since CoVðP̂~FÞ and CoVðĵÞ contribute
equally to CoVðP̂FÞ in Eq. (18), the following target values can be
selected; s~F ¼ sj ¼ sF=

ffiffiffi
2
p

, where sj and sF are target coefficients

of variation for ĵ and P̂F respectively.
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Algorithm 2 Metamodel-based failure probability, P~F

1: Define a;Nmin
PF

;Nmax
PF

; s~F
2: Initiate i 0

3: while i < Nmax
PF

& CoVðP̂~FÞ > s~F
n o

do

4: i iþ 1
5: z?i � Nð0; In�1Þ . In�1 is an identity matrix of
size ðn� 1Þ

6: Solve ~gða~bi þ z?i Þ ¼ 0 for ~bi . Metamodel line
search

7: if i P Nmin
PF

then

8: P̂~F  1
i

Pi
j¼1Uð�~bjÞ

9: VarðP̂~FÞ  1
iði�1Þ

Pi
j¼1 Uð�~bjÞ � P̂~F

� �2
10: CoVðP̂~FÞ  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP̂~FÞ

q
=P̂~F

11: end if
12: end while

13: return P̂~F , CoVðP̂~FÞ
j is calculated according to Algorithm 3 with the target coeffi-
cient of variation sj and minimum and maximum number of line

searches, Nmax
j and Nmin

j .
Algorithm 3 Correction coefficient j

1: Define a;Nmax
j , Nmin

j , sj
2: Initiate i 0
3: while i < Nmax

j & CoVðĵÞ > sj
� �

do
4: i iþ 1
5: z?i � Nð0; In�1Þ .In�1 is an identity matrix of s
6: Solve gðabi þ z?i Þ ¼ 0 for bi .Performance function

7: Solve ~gða~bi þ z?i Þ ¼ 0 for ~bi .Metamode

8: jUi  Uð�~biÞ=U �min ~bi; bi
h i� �

.Indi

9: wUi  U �min ~bi; bi
h i� �

10: jIi  U �max ~bi; bi
h i� �

=Uð�~biÞ . Indi

11: wIi  Uð�~biÞ
12: if i P Nmin

j then

13: wUj  wUj=
Pi

j¼1wUj; j ¼ 1; . . . ; i .Normaliz

14: ĵU  
Pi

j¼1wUjjUj

15: VarðĵUÞ  
Pi

j¼1w
2
UjðjUj � ĵUÞ2

16: wIj  wIj=
Pi

j¼1wIj; j ¼ 1; . . . ; i .Normalize

17: ĵI  
Pi

j¼1wIjjIk

18: VarðĵIÞ  
Pi

j¼1w
2
IjðjIj � ĵIÞ2

19: ĵ 1=ĵU þ ĵI � 1� VarðĵUÞ=ĵ3
U .Correction coeffic

20: VarðĵÞ  VarðĵUÞ=ĵ4
U þ VarðĵIÞ

21: CoVðĵÞ  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĵÞ

p
=ĵ

22: end if
23: end while
24: return ĵ, CoVðĵÞ
Finally, P̂F and the corresponding CoVðP̂FÞ are calculated accord-
ing to Eqs. (17) and (18).
5. Application example with parabolic failure limit

In the following section, the performance of the MLS approach
will be illustrated with a reliability problem defined by a parabolic
failure limit. The problem is studied for a range of dimensions to
evaluate the effect of dimensionality on the performance of the
MLS method.

5.1. Problem definition

The reliability problem is defined by an n-dimensional parabo-
loid studied in [15]:

gðZÞ ¼ a �
Xn
i¼2

Z2
i � Z1 � b ð30Þ

where Z ¼ Z1; . . . ; Zn½ �T 2 X is an n-dimensional vector of indepen-
dent random variables distributed by the joint multivariate normal
pdf, /ZðzÞ ¼ NnðlZ;RÞ, where lZ ¼ 0 and R ¼ In is an identity matrix
of size n. The parameters a and b in Eq. (30) are constants defining
the shape of the paraboloid. High-dimensional applications of the
ize ðn� 1Þ
line search

l line search

cator ratio

.Weight

cator ratio

.Weight

e weights

weights

ient estimate



Fig. 3. Illustration of the LS-DoE.
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reliability problem (Eq. (30)) can be assessed by implementing the
following substitution:

Q ¼
Xn
i¼2

Z2
i ð31Þ

where Q � v2
n�1 is a Chi-square distributed random variable with

n� 1 degrees of freedom. With the substitution implemented, the
n-dimensional reliability problem can be transformed to an equiva-
lent 2-dimensional problem with a linear performance function:

gðZ1;QÞ ¼ a � Q � Z1 � b ð32Þ
The joint pdf of the equivalent 2-dimensional reliability problem is
defined by a product: f ðz1; qÞ ¼ /Z1 ðz1Þ � f Q ðqÞ, where
/Z1 ðz1Þ ¼ Nð0;1Þ, and f Q ðqÞ ¼ v2

n�1. The transformation of the
n-dimensional problem (Eq. (30)) to an equivalent 2-dimensional
problem (Eq. (32)) is applied to illustrate the performance of the
LS-DoE.

The reliability problem in Eq. (30) is evaluated for a range of
dimensions with the paraboloid parameters a and b defined in
Table 1.

5.2. Kriging metamodel

The implementation of the MLS method is initiated with the
Kriging metamodel training according to Algorithm 1. The effect
of a regression model on the performance of the Kriging predictor
is evaluated by implementing a linear, q1 ¼ 1; z1; . . . ; znf g, and a
quadratic regression model, q2 ¼ 1; z1; . . . ; zn; z21; . . . ; z

2
n

� �
. For the

paraboloid parameters a and b in Table 1, the problem features a
single design point along the z1 axis. Based on these observations,
a is select as a unit vector parallel to the z1 axis with the sign
dependent on the value of b.

To generate the LS-DoE, � is defined as a zero-mean normal ran-
dom variable with the standard deviation r� specified in Table 1.
The performance of the LS-DoE on the reliability problem in Eq.
(30) can be examined on realizations in Fig. 5(a) and (b) for
n ¼ 2 and n ¼ 100 respectively. Fig. 5(a) and (b) display a set of
100 observations generated by the LS-DoE. From Fig. 5(a) and (b)
it can be detected that the LS-DoE is able to provide a set of inde-
pendent observations in the proximity of the limit state for the
reliability problem in Eq. (30).
The metamodel is stepwise refined with S observations, as spec-
ified in Table 1, until 0:2 6 ĵ 6 5 or NS 6 5. During the metamodel
refinement an estimate of j is evaluated according to Algorithm 3
with Nt

j ¼ 50 line searches.
In addition to the computational demands associated with the

performance function evaluations during the metamodel training,
a significant computational expense can be required to evaluate
MLEs for the Kriging parameters. A parametric study was con-
ducted to investigate the effect of n in the problem in Eq. (30)
and the LS-DoE size on the computational time required by the
pattern search algorithm in the DACE library to locate MLEs.
Simulations in Table 2 were performed with the DACE library [5]
in MatlabTM on an Intel�CoreTM i7-3770 CPU @ 3.40 GHz running
on Windows�7.

The results in Table 2 indicate that potential computational sav-
ings of the MLS approach can be affected by the computational
expenses employed to locate MLEs for the Kriging parameters in
high-dimensional reliability problems with large LS-DoE sizes.
5.3. Results

An estimate of PF , defined as a product of P̂~F and ĵ, is obtained
by evaluating Algorithms 2 and 3 respectively. Following the pro-

cedure in Algorithm 2, P̂~F is evaluated with the following parame-

ters Nmin
PF
¼ 50;Nmax

PF
¼ 105, and s~F ¼ 0:05=

ffiffiffi
2
p

. ĵ is calculated with

the following convergence criteria Nmin
j ¼ 50; Nmax

j ¼ 105, and

sj ¼ 0:05=
ffiffiffi
2
p

according to Algorithm 3. In total, 30 reliability
analyses were conducted to evaluate the performance of the
MLS approach with the target coefficient of variation

sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2~F þ s2j

q
¼ 0:05. The results in Table 3 are average values

over 30 MLS reliability analyses.
The performance of the MLS method is compared to several reli-

ability methods; LS, SS, and MC. The results in Table 3 are averages
over 30 reliability analyses conducted with each of the reliability
methods. The implementation of the LS method is based on a
defined for the MLS method in Section 5.2. The SS method is car-
ried out with intermediate probability levels of 0.1, estimated with
20,000 samples generated with the Modified Metropolis algorithm.

Upper and lower bounds for the CoVðP̂FÞ of the SS estimate of PF

were calculated as defined in [1].
Table 3 summarizes the comparison of the performance of sev-

eral reliability methods with the MLS method on the problem in
Eq. (30). The reliability methods are compared with respect to
the average number of calls to the performance function, N, and

average estimates of PF and CoVðP̂FÞ. In the case of the MLS
approach, N represents the total number of calls to the perfor-
mance function for the metamodel training and evaluation of j.
The computational cost associated with P̂~F is not included in N
due to a relatively low computational cost of a metamodel evalua-
tion (i.e., on the magnitude of a millisecond or lower for a single
evaluation) when compared to a performance function evaluation
in a general reliability problem. Due to a relatively simple formu-
lation of the performance function in Eq. (30) no additional compu-
tational costs were required for the determination of a for the MLS
and LS methods. In a general reliability problem the computational
cost related to the determination of a can be on the magnitude of n
performance function evaluations. Additionally, as a result of the
formulation of the performance function in Eq. (30), line search
along a can be solved analytically with a single evaluation.
Depending on the nonlinearity of a performance function in a gen-
eral reliability problem, line search can require P 2 performance
function evaluations for a single line search.



Fig. 4. Flowchart of the MLS method.

Table 1
Parameters for the reliability problem in Eq. (30).

n a b r� S

2 1 �3 1 10
10 1 0 1 50
100 0.1 4.5 1.5 200
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It can be observed from Table 3 that the MLS approach can pro-
vide consistent estimates of PF for the reliability problem in Eq.
(30), comparable to several commonly used reliability methods
(i.e., LS, SS, and MC). The MLS approach demonstrates a potential
to reduce computational expenses associated with reliability prob-

lems by estimating PF with similar CoVðP̂FÞ for a smaller or compa-
rable N with respect to the reliability methods considered in
Table 3.

The comparison between the computational expenses of the MLS
method with regression models q1 and q2 reveals that the quality
of the metamodel approximation considerably affects the perfor-
mance of the MLS method. For example, due to the inability of
the Kriging predictor with q1 to accurately approximate the perfor-
mance function for n ¼ 100, the MLS method does not provide
reductions in computational expenses when compared to the other
reliability methods in Table 3. Computational expenses for the MLS
implementation with q1 are dominated by the performance func-
tion evaluations employed to estimate j as presented in Table 4.
On the other hand, the calculation expenses for the MLS imple-
mentation with q2 are composed of the minimal number of sam-
ples for a multivariate regression analysis with q2 (i.e., 2nþ 1),
and the specified minimum number of samples for the estimate

of j;Nmin
j ¼ 50.

To investigate if the estimator CoVðP̂FÞ in Eq. (18) is a reason-

able estimate of the accuracy of P̂F , the empirical coefficient of vari-

ation, CoVEðP̂FÞ, calculated from 30 MLS analyses is compared to

the predicted values. The consistency between CoVðP̂FÞ and its esti-

mate, CoVEðP̂FÞ, in Table 5 confirms that CoVðP̂FÞ is a sound esti-

mate of accuracy of P̂F .
6. Parallel system analysis

A two component parallel system reliability problem, studied in
[11], is evaluated to investigate the performance of the MLS
approach on a problem with a highly nonlinear performance func-
tion. The reliability problem is defined as:

gðz1; z2Þ ¼max
2� z2 þ expð�0:1z21Þ þ ð0:2z1Þ4

4:5� z1z2

(
ð33Þ

where z1 and z2 are realizations of two independent standard nor-
mally distributed random variables, Z1 and Z2. The problem features
a single design point, zP ¼ ð1:6148;2:7806ÞT as displayed in Fig. 6.

The implementation of the MLS approach is initiated with the
Kriging metamodel training according to Algorithm 1 with q1

and S ¼ 50 observations per refinement step until 0:2 6 ĵ 6 5 or
NS 6 5. The Kriging metamodel is trained on observations of the
performance function generated by the LS-DoE. The LS-DoE is con-

structed with a ¼ ð0:5030;0:8643ÞT , pointing in the direction of zP ,
and a zero-mean normally distributed pseudo random variable
� � Nð0;2Þ. To demonstrate the performance of the LS-DoE on
the problem in Eq. (33), a set of 100 realizations is presented in
Fig. 6. During the metamodel refinement ĵ is evaluated according
to Algorithm 3 with Nt

j ¼ 50 line searches.
Following the MLS algorithm, an estimate of PF is calculated as a

product of P̂~F and ĵ. P̂~F is evaluated as specified in Algorithm 2 with

Nmin
PF
¼ 50; Nmax

PF
¼ 105, and s~F ¼ 0:01. ĵ is calculated according to

Algorithm 3 to satisfy the following convergence criteria

Nmin
j ¼ 50; Nmax

j ¼ 105, and sj ¼ 0:05=
ffiffiffi
2
p

. In total, 30 reliability
analyses were conducted to evaluate the performance of the MLS
approach with the target coefficient of variation sF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2~F þ s2j

q
¼ 0:0367. The MLS estimates are validated with 30 relia-

bility analyses conductedwith the LS, IS, SS, andMCmethod. The LS
method is implemented with a pointing in the direction of zP . An
importance sampling distribution for the IS approach is defined as
a bivariate normal distribution NðzP; I2Þ with the mean at zP and a
two-dimensional identity matrix I2 as the covariance matrix. The
SS method is carried out with intermediate probability levels of
0.1, estimated with 20,000 samples generated with the Modified

Metropolis algorithm. Upper and lower bounds for the CoVðP̂FÞ of
the SS estimate of PF were calculated as defined in [1].

Table 6 summarizes the comparison of the performance of sev-
eral reliability methods with the MLS method on the problem in
Eq. (6). The reliability methods are compared with respect to the

average N; P̂F , and CoVðP̂FÞ. In the case of the MLS approach, N rep-
resents the total number of calls to the performance function used
to determine a, train the metamodel and evaluate j.

After comparing the results in Table 6 it can be observed that
the MLS approach can provide estimates of PF for the reliability
problem in Eq. (6), comparable to several commonly used reliabil-
ity methods. The MLS approach provided estimates PF with similar

CoVðP̂FÞ for a smaller or comparable N with respect to the reliabil-
ity methods considered in Table 6. On average, computational
expenses employed to train the metamodel dominate in this exam-
ple with 53.3% of the total performance function evaluations.

To investigate if the estimator CoVðP̂FÞ in Eq. (18) is a reasonable

estimate of the accuracy of P̂F , the empirical coefficient of variation,

CoVEðP̂FÞ is compared to CoVðP̂FÞ. Based on the results in Table 6,

CoVEðP̂FÞ ¼ 5:19% is slightly higher than the estimated value

CoVðP̂FÞ ¼ 3:46%.
7. Reliability analysis of a laterally loaded pile

The development of an efficient approach for reliability analysis
is important for a wide range of engineering problems, including
natural hazards (e.g., water triggered landslides) and engineering



Fig. 5. Realizations of the LS-DoE with � � Nð0;1Þ for the reliability problem in Eq.
(30); (a) n ¼ 2, (b) n ¼ 100.
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structures (e.g., offshore wind turbines). In this study, a reliability
analysis of a monopile foundation for offshore wind turbines is
performed with the MLS method to examine the performance of
the approach on a practical engineering problem. The reliability
analysis is conducted to quantify the effects of uncertainties in lat-
eral load and soil properties on the ultimate limit state of a mono-
pile foundation. The response of a monopile is simulated by a
numerical finite element pile-soil model, which is an implicit func-
tion of the lateral load and soil parameters. The performance of the
MLS approach is validated with the LS method.

7.1. Numerical pile-soil model

The response of a pile to lateral load can be simulated by a finite
element model, known as the API or p–y model (e.g., [9]). This
model is based on Winkler’s beam on elastic foundation theory,
where the response of soil is simulated by a series of elastic
springs. The original Winkler model assumes elastic behavior of
soil, while in the API formulation it incorporates nonlinearities.
The nonlinearities in soil response are modeled by p–y curves,
where p is the soil reaction per unit length of a pile, and y is the lat-
eral displacement of a pile. P–y curves were developed by backcal-
Table 2
Computational time required to calculate MLEs for the Kriging parameters in seconds.

n S

20 200

2 0.01 0.10
10 0.03 0.46

100 – 12.59
culating a series of field test on laterally loaded piles performed in
different soil types. The API model is currently recommended in sev-
eral design codes for offshore wind turbine foundations (e.g., [9]).

The monopile, in this study, is a hollow tube with length
LP ¼ 30 m, diameter of D = 5.0 m, and pile wall thickness of
t = 0.05 m. The pile material is steel with Young’s modulus of
E=2:1 � 105 MPa, and a Poisson’s ratio of m ¼ 0:3. The material
behavior of the pile is assumed to be linearly elastic. Soil response
is simulated by a series of springs with material behavior defined
by p–y curves for medium stiff clay. Basic elements of the monopile
model are presented in Fig. 7.

Reliability analysis of the pile-soil system is conducted by con-
sidering the lateral load, H, and the undrained shear strength of the
clay, su, as random variables. The pile is laterally loaded with a hor-
izontal force H and a moment M ¼ H � 30 m at d ¼ 0 m. Other
parameters of the p-y curves are assumed to be deterministic with
the following values; unit weight c ¼ 18:0 kN/m3, empirical model
parameter J = 0.25, strain corresponding to one half of the
maximum principal stress difference y50 ¼ 0:005.

7.2. Random load

Uncertainties associated with H are modeled by a Gumbel
distributed random variable:

H � f HðlH;lH � CoVðHÞÞ ð34Þ
where lH ¼ 2500 kN is the mean, and CoVðHÞ ¼ 0:1 is the coeffi-
cient of variation, with the corresponding pdf presented in Fig. 8.

7.3. Soil variability

Variability of su is expected to significantly influence the pile-
soil response since su is directly related to the peak value of soil
resistance. The variability of su is modeled by means of a one-
dimensional random field:

suðdÞ; d 2 G � R1� � � f suðsuÞ ð35Þ
where d is soil depth or the reference variable d 2 G : 0 6 d 6 LPf g;G
is the studied domain, and f su ðsuÞ is a pdf specifying the random
field. f su ðsuÞ is a multivariate lognormal pdf, with mean linearly
increasing with depth:

lsu ¼ asu þ bsu � d ð36Þ
where asu and bsu are parameters of the mean function. The covari-
ance structure of the random field is determined by a given coeffi-
cient of variation CoVðsuÞ and a Markov correlation function:

qln su ðsÞ ¼ exp �2 � jd
0 � d00j
hd

 �
ð37Þ

where ðd0; d00Þ 2 G
� �

, and hd is the correlation length of ln su.
Realizations of the random field in Eq. (35) are generated by dis-

cretizing the domain d 2 G : 0 6 d 6 LPf g into P ¼ 40 intervals,
with interval length of dL ¼ LP=P. The generated random field is
fully described by a P-dimensional joint pdf, f su ðsuÞ. The intervals
are selected to correspond to the discretization of the finite ele-
500 1000 2000

0.48 2.71 11.88
3.35 16.72 76.03

70.94 302.89 1629.80



Table 3
Results for the reliability problem in Eq. (30).

Method MLS LS SS MC

q1 q2

n ¼ 2
N 135 55 433 101800 843190

P̂F � 104 4:80 4:81 4:80 4:62 4:76

CoV (%) 3:97 3:54 4:99 P 5:39 5:00
6 11:78

n ¼ 10
N 1201 71 41893 100000 518360

P̂F � 104 7:94 7:77 7:67 7:58 7:74

CoV (%) 3:53 3:54 5:00 P 4:93 5:00
6 10:54

n ¼ 100
N 100930 251 45066 104200 1057890

P̂F � 104 3:82 3:77 3:76 3:90 3:79

CoV (%) 6:63 3:54 5:00 P 5:43 5:00
6 11:95

Table 4
Average ratio (%) of the computational expenses employed to estimate j over N.

n 2 10 100

q1 80.5 80.1 99.0
q2 90.9 70.4 19.9

Table 5
Comparison between the empirical and the predicted CoV for the MLS method.

n 2 10 100

q1 CoV (%) 3.97 3.53 6.63
CoVE (%) 3.44 4.80 6.70

q2 CoV (%) 3.54 3.54 3.54
CoVE (%) 4.20 3.19 3.31

Fig. 6. Realization of the LS-DoE with � � Nð0;1Þ for the reliability problem in Eq.
(6).
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ment mesh of the numerical pile-soil model. In this study, the ran-
dom field, suðdÞ; d 2 Gf g, is specified with the following parame-
ters; asu ¼ 50 kPa, bsu ¼ 3 kPa/m, CoVðsuÞ ¼ 0:4; hd ¼ 2 m, and
P ¼ 40. A realization of suðdÞ; d 2 Gf g is presented in Fig. 9.

7.4. Reliability analysis

The reliability analysis of the monopile foundation is performed
to quantify the effects of uncertainties in the set of random vari-
ables X ¼ H; su½ �T on the ultimate limit state. In this study, the ulti-
mate limit state is defined by the monopile steel yield strength,
rlim ¼ 235 MPa. A transformation to a vector of independent stan-
dard normal distributed random variables, Z 2 X, is applied to
implement the MLS approach. The performance function is thus
defined as:

gðzÞ ¼ rlim � rðzÞ ð38Þ
where r ¼ rðzÞ is the maximum stress along the monopile.

The implementation of the MLS method for the reliability prob-
lem in Eq. (38) is initiated with the Kriging metamodel training
based on an LS-DoE, as defined in Algorithm 1. To generate an
LS-DoE it is necessary to specify a and the pseudo-random variable,
�. a is determined by evaluating gradients of the performance func-
tion at the mean point of the standard normal space, lZ. It is
expected that a gradient vector pointing in the direction of the
steepest descent of the performance function is a reasonable esti-
mate of a. A normalized gradient with respect to the i-th random
variable is defined as:

xi ¼
@gðzÞ
@zi

���
lZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPPþ1

j¼1
@gðzÞ
@zj

���
lZ

 �2
s ð39Þ

where @gðzÞ=@zi is the derivative of gðzÞwith respect to the i-th ran-
dom variable. Estimates ofx are evaluated by the central difference
scheme with two evaluations of gðzÞ per random variable. Esti-
mated x are presented in Fig. 10 with the gradient with respect
to H on the first position, followed by gradients with respect to
P ¼ 40 random variables associated with the su random field dis-
cretization. Based on the estimates of x in Fig. 10, a is selected as
a unit vector in the standard normal space pointing in the positive
direction, parallel to the axis assigned to H.

� is modeled as a zero-mean normally distributed random vari-
able with r� ¼ 30 kPa, selected to be on the magnitude
gðlZÞ � 170. The metamodel is stepwise refined with S ¼ 100
observations from the LS-DoE until 0:2 6 ĵ 6 5 or NS 6 10. During
the metamodel training a crude estimate of j is calculated with
Nt
j ¼ 100 simulations according to Algorithm 3. To minimize the



Table 6
Results for the reliability problem in Eq. (33).

Method MLS LS IS SS MC

n ¼ 2
N 762 2905 2883 114000 1650190

P̂F � 104 2:42 2:45 2:43 2:80 2:43

CoV (%) 3:52 4:00 4:95 P 5:70 5:00
6 12:87

Fig. 7. Laterally loaded monopile foundation.

Fig. 8. Probability density function of H.

Fig. 9. A random field realization of su .

Fig. 10. Performance function gradients at lZ .

Table 7
Results for the reliability problem in Eq. (38).

Method MLS LS

n ¼ 41
N 6889 33983

P̂F � 1010 1:74 1:78

CoV (%) 4:90 5:00
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number of evaluations of the performance function, the Nt
j sam-

ples used to evaluate ĵ in Algorithm 1 are integrated within the
set of samples in Algorithm 3 for an accurate estimate of j once
the metamodel is trained.

Given a Kriging metamodel, P̂F is calculated as a product of P̂~F

and ĵ, according Algorithms 2 and 3 respectively. P̂~F is evaluated

with the target coefficient of variation s~F ¼ 0:05=
ffiffiffi
2
p

with

Nmin
PF
¼ 50 and Nmax

PF
¼ 105. ĵ is calculated with the following con-

vergence criteria Nmin
j ¼ 50; Nmax

j ¼ 105, and sj ¼ 0:05=
ffiffiffi
2
p

. In
total, 30 reliability analyses were conducted to investigate the per-
formance of the MLS method on the reliability problem in Eq. (38)

with sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2~F þ s2j

q
¼ 0:05. Average MLS estimates of PF and

CoVðPFÞ among 30 reliability analyses are presented with the aver-
age number of evaluations of the performance function, N, in
Table 7. N includes the number of performance function evalua-
tions conducted to determine a, train the Kriging metamodel,
and evaluate ĵ.

The performance of the MLS method is validated by conducting
10 reliability analyses with the LS method. The implementation of
the LS method is based on the a, estimated for the MLS approach.
Total number of performance function evaluations, N, for the LS
approach includes the performance function evaluations used to

determine a and evaluate PF . Average values of P̂F ;CoVðP̂FÞ, and N
among 10 reliability analyses conducted with the LS method are
presented in Table 7.

From Table 7 it can be observed that the MLS method provided
an estimate of PF comparable to the LS estimate with reduced
computational expense. The MLS approach provided estimates
with on average 20% of the performance function evaluations
required by the LS method. The computational expenses employed
to evaluate j dominate on average in this example with 80.0% of
the total performance function evaluations. To verify that the

estimator in Eq. (18) is a sound estimate of the accuracy of P̂F

the empirical coefficient of variation, CoVEðP̂FÞ is compared to

CoVðP̂FÞ. Based on 30 MLS estimates CoVEðP̂FÞ ¼ 6:86% is slightly

higher than the average MLS estimate CoVðP̂FÞ ¼ 4:90%. These

results indicate that CoVðP̂FÞ in Eq. (18) provides a reasonable

estimate of accuracy of P̂F .
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8. Conclusion

Reliability analysis of structures can be a computationally chal-
lenging task if the failure probability to be estimated is low and/or
if the structural model is computationally complex. The Meta-
model Line Sampling method shows considerable potential to
reduce the computational efforts for such problems by utilizing
the efficiency of the Line Sampling method with a relatively low
computational cost of a metamodel of the performance function.

A metamodel of the performance function is trained on a set of
observations generated with a Line Sampling-based Design of
Experiments. The Line Sampling Design of Experiments provides
a set of observations in the proximity of the limit state by expand-
ing the definition of the limit state with artificial uncertainty.

Once a metamodel is trained, the estimate of failure probability
is calculated as a product of a metamodel-based failure probability
and a correction coefficient. The correction coefficient accounts for
the error in the metamodel estimate of failure probability resulting
from the replacement the performance function with a metamodel.
The estimate of failure probability is asymptotically unbiased and
consistent.

The performance of the Metamodel Line Sampling method was
examined on academic reliability problems and a practical reliabil-
ity problem of a monopile foundation for offshore wind turbines.
The implementation of the Metamodel Line Sampling with the
Kriging predictor provided accurate estimates of failure probability
under lower or comparable computational expense when com-
pared to several commonly used reliability methods. The Meta-
model Line Sampling approach performs optimally in reliability
problems with no strong nonlinearities in the performance func-
tion, such that the importance direction can be estimated. Based
on the studied examples, efficient performance is observed in
low to medium-dimensional reliability problems ðn < 100Þ. The
limitation in the dimensionality of a reliability problem is mainly
due to the decrease in efficiency and accuracy of the Kriging meta-
model with increasing dimensionality of a reliability problem.
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Appendix A. Distribution of Random Variables Conditioned on
the Failure Event

The distribution of random variables in X, conditioned on the
failure event, is defined as:

hFðzÞ ¼ IFðzÞ/ZðzÞR
Rn IFðzÞ/ZðzÞdz

¼ IFðzÞ/ZðzÞ
PF

ðA:1Þ

Assuming that an important direction, a, can be approximately
estimated, the marginal distribution of hFðzÞ in the ðn� 1Þ-
dimensional standard normal space of random variables orthogo-
nal to a, can be obtained by integrating out the random variable
along a, denoted as Za.

h?F ðz?Þ ¼
Z
R

hFðzÞdza ðA:2Þ

With the formulation of hFðzÞ from Eq. (A.1) incorporated into Eq.
(A.2), the following expression is obtained:

h?F ðz?Þ ¼
Z
R

IFðzÞ/ZðzÞ
PF

dza ðA:3Þ

Due to the rotational symmetry and independence of X:
h?F ðz?Þ ¼
Z
R

IFðzÞ/ZaðzaÞ/Z? ðz?Þ
PF

dza ðA:4Þ

h?F ðz?Þ ¼
/Z? ðz?Þ

PF

Z
R

IFðzÞ/Za ðzaÞdza ðA:5Þ

Following the implementation of the LS method, the integral in
Eq. (A.5) can be expressed as U �bðz?Þð Þ, where bðz?Þ is the solution
of a line search along a defined as g abðz?Þ þ z?ð Þ ¼ 0. The marginal
distribution is defined as:

h?F ðz?Þ ¼
U �bðz?Þð Þ/Z? ðz?Þ

PF
ðA:6Þ

The proportionality operator can be used to define the relation
between /Z? ðz?Þ and h?F ðz?Þ because PF is usually unknown prior to
a reliability analysis;

h?F ðz?Þ / U �bðz?Þ� �
/Z? ðz?Þ ðA:7Þ

Due to an unknown value of the normalizing constant, PF , the
distribution in Eq. (A.7) can be sampled by Markov Chain Monte
Carlo (e.g., Metropolis–Hastings algorithm [10]) or resampling
methods (e.g., rejection method [10]).

The relation between /Z? ðz?Þ and h?F ðz?Þ is used to define self-
normalized importance sampling estimates (e.g., mean, variance).
Self-normalized importance sampling estimates are evaluated on
z?i � /Z? ðz?Þ; i ¼ 1; . . . ;K
� �

with the following weights:

wi ¼ h?F ðz?i Þ=/Z? ðz?i ÞPK
j¼1h

?
F ðz?j Þ=/Z? ðz?j Þ

¼ U �bðz?i Þ
� �

PK
j¼1U �bðz?j Þ

� � ðA:8Þ

Consider a function lðz?Þ such that ll ¼
R
lðz?Þh?F ðz?Þdz? and

r2
l ¼

R ðlðz?Þ � llÞ2h?F ðz?Þdz? exist with r2
l > 0. A self-normalized

importance sampling mean estimate is calculated as:

l̂l ¼
XK
i¼1

wi � lðz?i Þ ðA:9Þ

The variance of the self-normalized importance sampling estimator
in Eq. (A.9) is defined as:

Varðl̂lÞ ¼
XK
i¼1

w2
i Varðlðz?i ÞÞ ¼

XK
i¼1

w2
i lðz?i Þ � l̂l

� �2 ðA:10Þ

Provided that all the observations have the same variance,
Varðlðz?i ÞÞ ¼ r2

l , the variance can be expressed as

Varðl̂lÞ ¼ r2
l

PK
i¼1w

2
i . To investigate the effect of unequally weighted

samples on the mean estimate, consider the unweighted mean
based on Ke independent observations. The unweighted mean has
variance r2

l =K
e. After setting Varðl̂lÞ ¼ r2

l =K
e and solving for Ke, a

so-called effective sample size is obtained as follows:

Ke ¼ 1
XK
i¼1

,
w2

i ðA:11Þ
Appendix B. Correction coefficient estimate

A relatively simple approximation of the estimator for j can be
obtained by inserting the estimators ĵU and ĵI in Eq. (10):

jðjU ;jIÞ � jðĵU ; ĵIÞ ¼ 1
ĵU
þ ĵI � 1 ðB:1Þ

Due to the ratio 1=ĵU , the estimator in Eq. (B.1) is biased. The bias in
the estimator is evaluated with the delta method by examining the
expectation of the Taylor’s series expansion of jðĵU ; ĵIÞ at jU and
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jI. The Taylor’s series expansion of jðĵU ; ĵIÞ up to the second-order
terms is evaluated as follows:

jðĵU ; ĵIÞ � jðĵU ; ĵIÞjjU ;jI
þ ðĵU � jUÞ @jðĵU ; ĵIÞ

@ĵU

����
jU ;jI

þ ðĵI � jIÞ @jðĵU ; ĵIÞ
@ĵI

����
jU ;jI

þ 1
2
ðĵU � jUÞ2 @

2jðĵU ; ĵIÞ
@ĵ2

U

�����
jU ;jI

þ 1
2
ðĵI � jIÞ2 @

2jðĵU ; ĵIÞ
@ĵ2

I

�����
jU ;jI

þ ðĵU � jUÞðĵI � jIÞ @
2jðĵU ; ĵIÞ
@ĵU@ĵI

�����
jU ;jI

ðB:2Þ

After applying the expectation operator to the terms of the Taylor’s
series expansion in Eq. (B.2) the following expression is obtained:

E jðĵU ; ĵIÞ½ � � 1
jU
þ jI � 1þ VarðĵUÞ

j3
U

¼ E jðjU ;jIÞ½ � þ VarðĵUÞ
j3

U

ðB:3Þ

Based on Eq. (B.3) the bias in jðĵU ; ĵIÞ can be approximated as
follows:

E jðĵU ; ĵIÞ½ � � E jðjU ;jIÞ½ � � VarðĵUÞ
j3

U

ðB:4Þ

Provided that the samples in Eq. (13i), jUj; j ¼ 1; . . . ;NS have
the same variance, VarðjUjÞ ¼ VarðjUÞ the bias becomes:

E jðĵU ; ĵIÞ½ � � E jðjU ;jIÞ½ � � 1
Ne

U

VarðjUÞ
j3

U

ðB:5Þ

where Ne
U ¼ 1=

PNU
j¼1w

2
F[~Fðz?j Þ is the effective sample size, obtained as

shown in Eq. (A.11). From Eq. (B.4) it follows that the estimator
in Eq. (B.1) is asymptotically unbiased as E jðĵU ; ĵIÞ½ ��f
E jðjU ;jIÞ½ �g ! 0 as Ne

U !1.
The application of the variance operator to Eq. (B.1) leads the

following expression:

Var jðĵU ; ĵIÞ½ � ¼ E jðĵU ; ĵIÞ � E jðĵU ; ĵIÞ½ �f g2
h i

� E
1
ĵU
þ ĵI � 1

jU
� jI

� �2
" #

� VarðĵUÞ
j4

U

þ VarðĵIÞ

¼ 1
Ne

U

VarðjUÞ
j4

U

þ 1
Ne

I

VarðjIÞ ðB:6Þ

where Ne
U ¼ 1=

PNU
j¼1w

2
F[~Fðz?j Þ and Ne

I ¼ 1=
PNU

j¼1w
2
~F
ðz?j Þ are the effec-

tive sample sizes, obtained as shown in Eq. (A.11). From Eq. (B.6)
it follows that jðĵU ; ĵIÞ in Eq. (B.1) is a consistent estimator as
the variance diminishes as Ne

U !1 and Ne
I !1.

Provided with the approximation of the bias in Eq. (B.4), a mod-
ified estimator for j can be derived as follows:

jðjU ;jIÞ � jbðĵU ; ĵIÞ ¼ jðĵU ; ĵIÞ � 1
Ne

U

VarðjUÞ
j3

U

¼ 1
ĵU
þ ĵI � 1� 1

Ne
U

VarðjUÞ
j3

U

ðB:7Þ

The expectation of the estimator in Eq. (B.7) is:

E jbðĵU ; ĵIÞ½ � ¼ E jðĵU ; ĵIÞ½ � � 1
Ne

U

VarðjUÞ
j3

U

� 1
jU
þ jI � 1 ðB:8Þ
The variance of the estimator in Eq. (B.7) remains the same as in Eq.
(B.6):

Var jbðĵU ; ĵIÞ½ � ¼ E jbðĵU ; ĵIÞ � E jbðĵU ; ĵIÞ½ �ð Þ2
h i

¼ E jðĵU ; ĵIÞ � E jðĵU ; ĵIÞ½ �ð Þ2
h i

¼ Var jðĵU ; ĵIÞ½ � ðB:9Þ
Appendix C. Estimate of failure probability

The estimate of PF with the corresponding variance is derived
based on an unbiased estimate of the metamodel-based failure

probability, P̂~F , with the variance VarðP̂~FÞ, and asymptotically unbi-
ased estimate of the correction coefficient ĵ with the variance

VarðĵÞ. The estimates P̂~F and ĵ are independent as they are evalu-
ated on samples from different distributions. The estimate of PF

then becomes:

P̂F ¼ P̂~F � ĵ ðC:1Þ

The variance of P̂F is obtained as follows:

VarðP̂FÞ ¼ VarðP̂~F � ĵÞ ¼ EðP̂2
~F � ĵ2Þ � EðP̂~F � ĵÞ

2

¼ EðP̂2
~F Þ � Eðĵ2Þ � EðP̂~F � ĵÞ

2 ðC:2Þ

Given that VarðP̂~FÞ ¼ EðP̂2
~F
Þ � EðP̂~FÞ

2
and VarðĵÞ ¼ Eðĵ2Þ � EðĵÞ2 the

variance becomes:

VarðP̂FÞ ¼ VarðP̂~FÞ þ EðP̂2
~F Þ

h i
� VarðĵÞ þ Eðĵ2Þ� �� EðP̂~F � ĵÞ

2

¼ VarðP̂~FÞEðĵ2Þ þ EðP̂2
~F ÞVarðĵÞ þ VarðP̂~FÞVarðĵÞ ðC:3Þ

Since P̂~F is an unbiased estimate EðP̂~FÞ ¼ P~F . Similarly, since ĵ is
asymptotically unbiased EðĵÞ ¼ j. The variance becomes:

VarðP̂FÞ ¼ VarðP̂~FÞj2 þ VarðĵÞP2
~F þ VarðP̂~FÞVarðĵÞ ðC:4Þ

In order to achieve a relatively accurate estimate of P̂F with a
low variance, it is necessary to achieve correspondingly low values

of VarðP̂~FÞ and VarðĵÞ. Given that P̂~F and VarðP̂~FÞ are evaluated with
a computationally inexpensive metamodel, it is expected the
majority of computational expenses will be utilized to achieve a
relatively low value of the second term on the right side of the
expression in Eq. (C.4), VarðĵÞP2

~F . After including the expression

from Eq. (B.6) in VarðĵÞP2
~F , the following expression is obtained:

VarðĵÞP2
~F �

1
Ne

U

VarðjUÞ
j4

U

þ 1
Ne

I

VarðjIÞ
 �

P2
~F ðC:5Þ

From Eq. (C.5) it can be observed that the decay of VarðĵÞP2
~F is

advanced by the increase in the effective sample sizes, and low val-
ues of VarðjUÞ;VarðjIÞ, and P2

~F . On the other hand, the convergence

rate of VarðĵÞP2
~F is decreased with relatively low values of jU .

Given a relatively accurate metamodel approximation of the limit
state, the events corresponding to jU and jI become less rare when
compared to the failure event. Consequently, this provides a poten-
tial to achieve relatively low values of VarðĵUÞ and VarðĵIÞ with
smaller effective sample sizes, relative to the sample size that

would be required to achieve comparable VarðP̂FÞ in the direct esti-

mation of PF . Given the influence of j on VarðP̂FÞ in Eqs. (C.4) and
(C.5), it is advised to train a metamodel such that PF and P~F are on
the same magnitude, with 0:1 6 j 6 10.

The coefficient of variation of the estimate, CoVðP̂FÞ, is derived
by dividing Eq. (C.4) with P2

~F � j2.
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CoVðP̂FÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CoV2ðP̂~FÞ þ CoV2ðĵÞ þ CoV2ðP̂~FÞCoV2ðĵÞ

q
ðC:6Þ

Given that the estimates P̂~F and ĵ are usually evaluated with

CoVðP̂~FÞ and CoVðĵÞ between 1% and 10%, CoVðP̂FÞ can be approxi-
mated relatively accurately as follows:

CoVðP̂FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CoV2ðP̂~FÞ þ CoV2ðĵÞ

q
ðC:7Þ
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