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Some theoretical models have been developed over the years by the authors dealing with reliability-
based design of geotechnical systems. A comparison reveals that these models follow the same form
which can be used to develop a unified reliability-based model, which includes the effects of spatial vari-
ability, site understanding, and failure consequence severity. This paper describes the unified model and
applies it to four geotechnical problems to determine resistance and consequence factors to be used in
design. The problems considered are the ultimate and serviceability limit state design of shallow founda-
tions and ultimate and serviceability limit state design of deep foundations.
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1. Introduction

By and large, the ground is one of the most highly variable,
hence uncertain, engineering materials. Unlike quality controlled
materials such as wood, concrete, or steel, whose probability distri-
butions are well known and relatively constant world-wide,
geotechnical designers face large resistance uncertainties from site
to site, and even within a site. Because of this site specific uncer-
tainty, there is a real desire in the geotechnical community to
account for site understanding in order to achieve economical,
yet safe designs. This can be achieved by adjusting the resistance
factor (or factored resistance) as a function of site and model
understanding, allowing overall safety to be maintained at a com-
mon target maximum failure probability as well as demonstrating
the direct economic advantage of increased site understanding.
Prior to 2014, the Canadian design codes specified a single resis-
tance factor for each limit state. In other words, these codes made
no allowance for changes in the resistance factor as changes in the
level of site understanding and, for that matter, of failure conse-
quences, occur.

The overall target safety level of any design should depend on at
least three factors: (1) the uncertainty in the loads, (2) the
uncertainty in the resistance, and (3) the severity of the failure
consequences. In most modern codes, these three items are
assumed independent of one another and are thus treated sepa-
rately. The load factors handle the uncertainties in the loads and,
on the load side, failure consequences are handled by applying
an importance factor to the more uncertain and site specific loads
(e.g. earthquake, snow, and wind). In North America, the impor-
tance factor multiplies the load factor to adjust the load excee-
dance probability (or return period) and thus the target
reliability index. In Europe, the KFI factor, defined in Annex B of
Eurocode 1990 – Basis of Structural Design [2] is similar in nature.
Uncertainties in resistance are handled by resistance factors that
are usually specific to the material used in the design (e.g. uc for
concrete, us for steel, etc.). Note that in North America and within
this paper, these factors are applied in a multiplicative fashion,
whereas in Europe they are applied in a divisive fashion.

When dealing with a highly variable and site specific material
such as the ground, it makes sense to apply a resistance factor that
depends on both the resistance uncertainty and on the conse-
quences of failure. The basic idea is that the overall factor applied
to the geotechnical resistance should vary with both uncertainty
and failure consequence. Increased site investigation should lead
to lower uncertainty and a higher resistance factor, and thus a
more economical design. Similarly, for geotechnical systems with
high failure consequences, e.g. failure of the foundation of a major
multi-lane highway bridge in a large city, the overall resistance
factor should be decreased to provide a decreased maximum
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Nomenclature

CPT cone penetration test for in-situ soil testing
LRFD Load and Resistance Factor Design
LSD Limit States Design
SLS Serviceability Limit State
ULS Ultimate Limit State
ai pile settlement prediction parameters, i ¼ 0;1;2
B width of shallow foundation
Bi iterative guesses at shallow foundation width
c cohesion (random)
cg equivalent cohesion which gives same resistance as spa-

tially variable cohesion (random)
ĉ characteristic cohesion, (geometric) average of sample

values (random)
C edge length of averaging domain, Vf , under a shallow

foundation
d pile diameter
D depth of soil sample
Ê characteristic elastic modulus, (geometric) average of

sample values (random)
Eg equivalent uniform soil elastic modulus which gives

same response as actual spatially variable elastic modu-
lus (random)

Emed median elastic modulus
FD true dead load (random)
FL true live load (random)
FT true total load (random)
F̂D characteristic dead load
F̂iu i’th characteristic load effect at ULS
F̂is i’th characteristic load effect at SLS
F̂L characteristic live load
F̂T characteristic total load
F̂Tu total design load at ULS
F̂Ts total design load at SLS
H pile length or depth to bedrock
Iiu importance factor corresponding to i’th characteristic

load effect at ULS
Iis importance factor corresponding to i’th characteristic

load effect at SLS
Ip settlement influence factor
KFI Eurocode reliability differentiation factor
N̂c characteristic bearing capacity factor (base on charac-

teristic soil properties)
Ncg equivalent bearing capacity factor which gives same re-

sponse as actual spatially variable ground
p pile perimeter length
pf probability of failure
pm lifetime maximum acceptable failure probability
P½�� probability operator
r distance between soil sample and foundation centerli-

nes
R ground resistance
R̂s characteristic serviceability ground resistance based on

characteristic soil properties
R̂u characteristic ultimate ground resistance based on char-

acteristic soil properties
s width parameter of bounded tanh distribution
u1 settlement influence factor
vE coefficient of variation of elastic modulus
vc coefficient of variation of cohesion
vL coefficient of variation of live load
vD coefficient of variation of dead load
vFT coefficient of variation of total load
Vf averaging volume of the ground under or around the

foundation

Vs averaging volume of the soil sample
Vfs average correlation coefficient between the sample vol-

ume and the averaging volume under the foundation
W true total load times ratio of characteristic to equivalent

ground properties (random)
x� vector containing spatial position
a adhesion coefficient
aiu load factor corresponding to the i’th load effect at ULS
ais load factor corresponding to the i’th load effect at SLS
aD dead load factor
aL live load factor
b reliability index
Dx width of soil sample
d true foundation settlement (random)
dmax maximum acceptable foundation settlement
g
�

vector containing spatial position
cf variance reduction factor due to averaging over domain

Vf
cs variance reduction factor due to averaging over domain

Vs

cfs average correlation coefficient between the ground
properties within domains Vf and Vs

lc mean cohesion
lD mean dead load
lE mean elastic modulus
lFT mean total load
lL mean live load
lln FT mean of the logarithm of total load
llnW mean of the logarithm of W
lln c mean of the logarithm of cohesion
lln cg mean of the logarithm of the cohesion (geometrically)

averaged over domain Vf
lln ĉ mean of the logarithm of characteristic cohesion
llnNc

mean of the logarithm of bearing capacity factor
llnNcg

mean of the logarithm of the bearing capacity factor
(geometrically) averaged over domain Vf

lln N̂c
mean of the logarithm of the characteristic bearing
capacity factor

l̂B estimated mean footing width
l/ mean friction angle
lNc

mean bearing capacity factor
q correlation coefficient between the ground properties

(transformed to Gaussian space) at two points
h random field correlation length
rln FT standard deviation of logarithm of total load
rFT standard deviation of total load
rlnW standard deviation of the logarithm of W
rlnR standard deviation of the logarithm of ground resistance
uc resistance factor for concrete
ug geotechnical resistance factor at either ULS or SLS
ugu geotechnical resistance factor at ULS
ugs geotechnical resistance factor at SLS
us resistance factor for steel
uo moderate or average resistance factor
/̂ characteristic soil friction angle
/min minimum soil friction angle
/max maximum soil friction angle
W consequence factor at either ULS or SLS
Wu consequence factor at ULS
Ws consequence factor at SLS
n
�

vector containing spatial position
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Table 1
Targeted theoretical maximum lifetime failure probabilities, pm , and equivalent
reliability indices, b (shown parenthesized) for ULS and SLS foundation design.

Consequence level ULS SLS

High 1/10,000 (3.7) 1/1000 (3.1)
Typical 1/5000 (3.5) 1/500 (2.9)
Low 1/1000 (3.1) 1/100 (2.3)
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acceptable failure probability. Similar to the multiplicative
approach taken in structural engineering, where the overall load
factor is a product of a load factor and an importance factor, the
overall resistance factor applied to geotechnical resistance is taken
here to consist of two parts which are multiplied together:

(1) a resistance factor, ugu or ugs, which accounts for resistance
uncertainty. This factor basically aims to achieve a target
maximum acceptable failure probability equal to that used
for geotechnical designs for typical failure consequences,
e.g. lifetime failure probability of approximately 1/5000 for
ultimate limit states or 1/500 for serviceability limit states.
The subscript g refers to ‘geotechnical’ (or ‘ground’), while
the subscripts u and s refer to ultimate and serviceability
limit states, respectively.

(2) a consequence factor, Wu or Ws, which accounts for failure
consequences at either the ultimate or serviceability limit
states, respectively. The consequence factor will be greater
than 1.0 if failure consequences are low and less than 1.0
if failure consequence exceed those of typical geotechnical
systems. The basic idea of the consequence factor is to adjust
the maximum acceptable failure probability of the design
down (higher reliability) for high failure consequences, or
up (lower reliability) for low failure consequences.

This paper will consider the limit state design (LSD) of both
shallow and deep foundations within a load and resistance factor
design (LRFD) framework. The goal is to provide a single theoretical
model which can be used to determine the resistance and conse-
quence factors required to achieve a target maximum acceptable
failure probability for a variety of geotechnical design problems.
The methodology and results presented here are intended for use
in the total resistance factor approach, which is Design Approach
2 in the Eurocodes, and generally used in North America.

Within the LRFD framework, geotechnical designs proceed by
adjusting the resistance parameters (usually the foundation geom-
etry) so that the factored geotechnical resistance is at least equal to
the effect of factored loads. For example, for ultimate limit states
(ULS), this means that the geotechnical design should satisfy an
equation of the form

WuuguR̂u P
X

IiuaiuF̂ iu ð1Þ

in which Wu is a consequence factor, ugu is the geotechnical resis-

tance factor, and R̂u is the characteristic ultimate resistance, all at
the ULS. In Canada, the characteristic resistance is assumed to be
the best estimate of the ground resistance using ground properties
which are (cautious) estimates of the mean ground properties yield-
ing a (cautious) estimate of the mean ground resistance. The right-
hand-side consists of Iiu, an importance factor, multiplying the ith

factored load effect, aiuF̂iu. A similar equation must be satisfied for
serviceability limit states (SLS), with the subscript u replaced by s,
i.e.,

WsugsR̂s P
X

IisaisF̂is ð2Þ
As mentioned previously, the load factors, aiu or ais, typically

account for uncertainty in loads, and are greater than 1.0 for ulti-
mate limit states but often assumed equal to 1.0 for serviceability
limit states. The geotechnical resistance factor, ugu or ugs, is typi-
cally less than 1.0 and accounts for uncertainties in the geotechni-
cal parameters and models used to estimate the characteristic

geotechnical resistance, R̂u or R̂s, along with other sources of error
(e.g. model error). The consequence factor, Wu or Ws, and the
importance factor, Iiu or Iis, are employed to adjust the target
reliability level to account for different magnitudes of failure
consequences. As discussed earlier, the importance factor appears
on the load side of Eqs. (1) and (2) in order to account for failure
consequences and is generally applied to site specific and highly
uncertain load distributions (usually snow, wind, and earthquake).
Because the ground is also site specific and highly uncertain, it
makes sense to apply a similar consequence factor to the resistance
side of Eqs. (1) and (2) and so adjust the factored resistance to
account for failure consequences, particularly in those cases not
covered by the load side importance factor. Further research needs
to be performed to establish the interaction between the impor-
tance and consequence factors and their combined effect on failure
probability. For example, for frictional soils, changing the total load
factor may have little effect on the required resistance design and
it could be that the consequence factor needs to be applied simul-
taneously with the importance factor in this case.

Since the focus of this work is on developing a unified theory to
predict resistance and consequence factors, applied to the charac-
teristic resistance, the importance factors, Iiu and Iis, will be
assumed to have values 1.0. The interaction between the impor-
tance and consequence factors is beyond the scope of this paper.
In addition, only dead (permanent) and live (variable) loads will

be considered in this study. If the total design loads, F̂Tu and F̂Ts ,
for ULS and SLS respectively, are defined as the sum of the factored
characteristic loads,

F̂Tu ¼ aLF̂L þ aDF̂D ð3aÞ

F̂Ts ¼ F̂L þ F̂D ð3bÞ
where it is assumed that the SLS load factors are 1.0, then the LRFD
Eqs. (1) and (2) simplify to

WuuguR̂u P F̂Tu ð4aÞ

WsugsR̂s P F̂Ts ð4bÞ
Three failure consequence levels will be considered in this

paper;

(1) high consequence: failure of the supported structure has large
safety and/or financial consequences (e.g., hospitals, schools,
and lifeline highway bridges),

(2) typical consequence: has failure consequences typical of the
majority of civil engineering projects, and

(3) low consequence: failure of the supported structure has little
or no safety and/or financial consequences (e.g., low use
storage facilities or low use bridges).

Most designs will be aimed at the typical failure consequence
level. The target maximum acceptable lifetime failure probabilities,
pm, assumed in this study are as shown in Table 1, along with their
corresponding reliability indices, b, (shown in brackets). The values
shown for ULS approximately span the reliability index range sug-
gested in Canadian structural design codes. For example, the Cana-
dian Highway Bridge Design Code [3] specifies an annual target
reliability index of 3.75, which corresponds to a 50-year lifetime
target reliability index of somewhere between 2.7 and 3.5, depend-
ing on the assumptions made about inter-year dependencies. The



G.A. Fenton et al. / Computers and Geotechnics 78 (2016) 110–122 113
values shown in Table 1 may thus be somewhat on the high side
for Canada, but may be on the low side with respect to the Euro-
code [2] which suggests a higher consequence reliability index
for a 50-year lifetime of 4.3. What the societally acceptable target
reliability indices should be is evidently still a topic worthy of con-
tinued world-wide investigation. Note also that despite the differ-
ing target reliability indices between Canada and Europe, the
design factors used in both regions result in pretty much the same
overall factor of safety [9], suggesting that the achieved reliability
in both jurisdictions are actually quite similar.

Note that the target failure probabilities shown in Table 1
assume some redundancy (as typically required in structural
codes), so that the actual system lifetime failure probability is usu-
ally less than the component maximum lifetime failure probability,
pm. The effect of redundancy in geotechnical components on relia-
bility, which may lead to adjustment of the resistance factors, is a
topic currently under investigation by the authors.

2. Theoretical failure probability and derived design factors

The theoretical framework required to estimate the failure
probability of a geotechnical system should consider;

(1) uncertainty in the loads, including consideration of the dis-
tribution of static (dead) loads and the extreme value distri-
bution of dynamic (live) loads over the lifetime of the
geotechnical system and its supported structure, and

(2) uncertainty in the resistance, including random field models
of the ground to characterize its natural spatial variability,
along with prediction model uncertainty, and uncertainty
in the ground strength parameters (due to measurement
errors and lack of sufficient sampling) within the zone of
influence under and around the foundation being designed.
In this paper, only spatial variability is considered, not
uncertainty in the prediction model nor in the measurement
of the ground strength parameters. This means that the
resistance factors derived here are upper bounds in the event
that the ground parameter variability and correlation length
are known precisely. Otherwise, the assumption of a worst
case correlation length (to be discussed later) or a slightly
higher coefficient of variation can be used to account for
the model and measurement errors which are not directly
accounted for here (see, e.g. [12], for a more detailed discus-
sion of the effects of measurement errors). Alternatively,
designers with an increased understanding of the site’s geol-
ogy, experience with similar sites, etc., will be able to
approach the upper bounds presented here.

In its simplest form, a geotechnical system fails if its resistance,
R, is less than the supported total load, FT , any time during the sys-
tem’s design life. The system resistance R is often a complex func-
tion of the actual ground properties over space and time – usually
corresponding to some sort of minimum over time of all minimum
Fig. 1. Bearing failure of a shallow foundation on a spatially variable soil.
‘strength’ failure mechanisms through space. For example, bearing
failure of a shallow foundation occurs when the weakest path
through the ground has insufficient shear strength to resist the
applied load. Fig. 1 illustrates a bearing failure mechanism which
might occur at an instant in time during the design life of a footing.
Rather than the traditionally assumed symmetric double log-spiral
failure mechanism predicted when the ground properties are spa-
tially constant, the failure mechanism that occurs when ground
properties vary spatially follows the weakest path, resulting in
non-symmetric and sometimes quite erratic failure paths. In par-
ticular, in Fig. 1, the weaker (whiter) ground to the right of the
footing attracts the failure mechanism. The ‘weakest path’ failure
mechanism is on average weaker than the uniform symmetric fail-
ure mechanism suggested by traditional analysis (based on the
mean strength), which implies that traditional models are uncon-
servative when based on the mean. Fig. 1 is taken from a previous
random finite element method (RFEM) study which was one of
several used to validate the theory presented in this paper [8].
The results presented here do not, however, make direct use of
the finite element method.

The major challenge in reliability-based design is how to cap-
ture the weakest path behavior of the ground in a way that is sim-
ple enough to use in practice. The key to answering this question is
to replace the spatial variability of the ground by a single ‘equiva-
lent’ random variable which yields the same probabilistic behavior
as the actual spatially variable ground. Since this paper is also con-
cerned with uncertainty in the estimation of ground properties,
two random variables are used for each ground property in the
proposed unified model. The first is an equivalent single random
variable which yields the same foundation response as does the
actual random field (e.g. cg , to be defined shortly). The second is
a characteristic random variable which is the sample estimate of
the equivalent random variable (e.g., ĉ, also to be defined shortly).
For example, if a realization of an actual spatially variable c—/ field
provides a shallow foundation bearing capacity of 1000 kN, then
the equivalent single values of c and / would be those which pro-
vide a bearing capacity of 1000 kN. A sample of the spatially vari-
able c—/ field would allow ‘characteristic’ estimates of these
‘equivalent’ values. If the sample is accurate, then the characteristic
values will be close to the equivalent values and the resulting foun-
dation design should have a lower failure probability.

Consider, for example, the settlement of a shallow foundation
where performance failure is defined as the event that the actual
foundation settlement, d, exceeds the serviceability limit, dmax, i.e.,

pf ¼ P½d > dmax� ð5Þ

The actual settlement, d, is a function of the random loads the
foundation sustains over time, the foundation geometry, and the
random (usually non-linear) compressibility field of the ground
under the footing. Thus, d is a very complicated function of many
random variables. Nevertheless, d is a single random variable
which has some distribution. If that distribution can be found, then
pf can be determined.

To illustrate the process in a geotechnical context, consider the
bearing failure of a strip footing supported by a c—/ soil, as shown
in Fig. 1 (following [8]). To simplify the illustration, the soil will be
considered weightless with no foundation embedment nor
surcharge. It is noted that the lack of weight, embedment, and
surcharge only affects the required resistance factors if these
additional design parameters add significantly to the overall
uncertainty of the mean resistance prediction, in which case a
lower resistance factor should be selected.

In this example, the characteristic resistance is

R̂u ¼ BĉN̂c ð6Þ
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where B is the footing width, ĉ is the characteristic cohesion, and

the characteristic bearing capacity factor, N̂c , is given by (see e.g.,
[18,14,13], the form shown here was developed by Griffiths et al.
[10])

N̂c ¼
expfp tan /̂g tan /̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 /̂

q� �2

� 1

tan /̂
ð7Þ

Since this example is of a strip footing, the units of R̂u are force
per unit length along the strip footing.

The characteristic ground parameters (e.g., cohesion and fric-
tion angle) are obtained through a site exploration program.
Although the definition of ‘characteristic’ varies quite widely
around the world, it is assumed here that the characteristic values
are ‘a cautious estimate of the mean ground parameter’. In North
America, the characteristic values are usually based on some sort
of conservative estimate of the mean (see, e.g., [1,19]), which is
generally somewhat below the (estimated) mean. In this paper,
the characteristic values are defined as geometric averages for
shallow foundations (which are always somewhat below the mean
being low strength dominated) and as arithmetic averages for deep
foundations (which are best estimates of the mean). See Fellin and
Oberguggenberger [5] for more rigorous definitions of ground
shear strength parameters which include, for example, the effect
of correlation between cohesion and friction angle. For simplicity,
cohesion and friction angle are assumed independent in this paper.

Using Eq. (6) in Eq. (7), the LRFD equation becomes

WuuguBĉN̂c P aLF̂L þ aDF̂D ð8Þ
which, taken at the equality, allows the footing to be designed,

B ¼ aLF̂L þ aDF̂D

WuuguĉN̂c

¼ F̂Tu

WuuguĉN̂c

ð9Þ

Failure of the footing occurs if the actual total load on the foot-
ing, FT ¼ FL þ FD, where FL is the actual live (variable) load and FD is
the actual dead (permanent) load (both random), exceeds the
actual (random) resistance. The probability of failure is thus

pf ¼ P½FT > cgNcg B� ð10Þ
where cg and Ncg are some sort of averages of the random cohesion
and friction fields, taken in the vicinity of the footing, such that the
product cgNcg B has the same distribution as the actual resistance of
the spatially variable ground. Past research by the authors (see [7])
has shown that cg and Ncg are well approximated by suitably
selected geometric averages of c and / in the vicinity of the
foundation. The appropriate averaging regions are suggested in
the following sections.

Substituting Eq. (9) into Eq. (10) and collecting all random
variables to the left side of the inequality leads to

pf ¼ P FT
ĉN̂c

cgNcg
>

F̂Tu

Wuugu

" #
ð11Þ

If we let

W ¼ FT
ĉN̂c

cgNcg
ð12Þ

then the failure probability can be written in general terms (for
either ULS or SLS by dropping the u subscript on the resistance
and consequence factors) as

pf ¼ P W >
F̂T

Wug

" #
ð13Þ
The random variables on the right-hand-side of Eq. (12) are all
assumed to be lognormally distributed. This is often a reasonable
(and conservative) assumption, especially for those variables
which are defined as geometric averages, since geometric averages
tend to a lognormal distribution by the central limit theorem. If
this assumption is true, thenW is also (at least approximately) log-
normally distributed, so that

pf ¼ P½lnW > ln F̂T � lnWug �

¼ 1�U
ln F̂T � ln Wug

� �
� llnW

rlnW

0
@

1
A ð14Þ

where U is the cumulative standard normal distribution function.
Noting that the probability of failure can be expressed in terms of
the reliability index, b, as pf ¼ 1�UðbÞ, then an explicit expression
for the total factor applied to the resistance, is

Wug ¼
F̂T

exp llnW þ brlnW
� � ð15Þ

where, for design, the reliability index is taken as the target speci-
fied as in Table 1; b ¼ U�1ð1� pmÞ.

Although the definition of W changes slightly from problem to
problem, once it is defined, Eqs. (13)–(15) can be used to determine
the failure probability and total resistance factor for all four
geotechnical problems considered in this paper, so long as suitable
averaging regions can be found under or around the geotechnical
system. It is expected that these equations can also be used for
most other geotechnical problems, with the possible exception of
slope stability and problems where the soil acts as both the load
and the resistance (e.g., some retaining walls). In addition, it will
be shown that usually llnW ¼ lln FT

and that rlnW has a form which
is common to most geotechnical problems.

For the bearing capacity of a strip footing currently under con-
sideration, the parameters of the lognormally distributed random
variable W are obtained by looking at the mean and variance of
lnW , where

lnW ¼ ln FT þ ln ĉ � ln cg þ ln N̂c � lnNcg ð16Þ
Now assume that ĉ and cg are defined as geometric averages

over the sample volume and over some suitable volume under/
around the foundation, respectively. If so, then ln ĉ and ln cg are
arithmetic averages of ln cðx

�
Þ over the same volumes,

ln ĉ ¼ 1
Vs

Z
Vs

ln cðx
�
Þd x

�
ð17aÞ

ln cg ¼ 1
Vf

Z
Vf

ln cðx
�
Þd x

�
ð17bÞ

where x
�
is spatial position, Vs is the volume of the soil sample

(assumed to be contiguous for simplicity – otherwise Eq. (17a) a
becomes a discrete sum), and Vf is a suitable volume of the averag-
ing region in the vicinity of the foundation. The main difficulty with
the solution of Eqs. (14) and (15) is with the selection of an appro-
priate averaging region, Vf .

In order to solve Eqs. (14) and (15), the mean and variance of
lnW must be found. The mean is relatively simple if the ground
is assumed to be statistically stationary (the mean and covariance
structure remains constant over space), so that

lln ĉ ¼ lln cg ¼ lln c ð18aÞ
lln N̂c

¼ llnNcg
¼ llnNc

ð18bÞ

which gives

llnW ¼ lln FT
þ lln ĉ � lln cg þ lln N̂c

� llnNcg
¼ lln FT

ð19Þ
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The cancellation of all of the mean ground parameters from
llnW is typical if the random field is stationary. Note that if the ran-
dom field is not stationary in the mean, the characteristic resis-
tance (Eq. (6)) need only be separated into two parts; a
deterministic part which is determined from the mean trend, and
a residual part which is stationary and follows the above proce-
dure. The results presented above would then still apply once the
mean trend has been removed from the random field and used
directly in the prediction of the characteristic geotechnical
resistance.

The variance of lnW is complicated by the random field model
of the ground. As mentioned previously, the basic idea is to replace
the spatial variability of the actual ground with suitably defined
local averages. Fig. 2 illustrates the local averages involved: one
local average under the footing is within the region Vf , and if the
size of Vf is properly selected, then the ground properties averaged
over Vf will have the same bearing capacity distribution as the
actual ground. Because the bearing failure follows the weakest
path through the ground, a geometric average has been found to
be appropriate [8]. Similarly, in order to perform the design, the
ground will have been sampled at some location and then the char-
acteristic ground parameters used in the design would be some
sort of average of the sample values. If it is assumed that the soil
sample is actually a CPT sounding of depth D at some location r
away from the center of the footing, then the characteristic ground
parameters would be an average of the observations over the vol-
ume Vs. It will be assumed here that a CPT sounding is reflecting
the soil’s strength parameters over a region around the cone of
width Dx and it is further assumed that the appropriate average
to use is again a geometric average.

If the load, FT , and ground strength parameters, in this case c
and /, are assumed to be mutually independent then, to at least
first order (see [8], for details),

r2
lnW ¼ r2

ln FT
þ r2

ln c þ r2
lnNc

	 

cf þ cs � 2cfs
h i

ð20Þ

where cf is the variance reduction factor due to (geometric) averag-
ing over a suitable region (Vf ) under or around the foundation, cs is
the variance reduction factor due to (geometric) averaging of the
soil sample (within Vs), and cfs is the average correlation coefficient
between the region Vf and the region Vs. The last is really a reflec-
tion of how well the soil sample estimates the nature of the ground
under the footing. As r increases, it is expected that cfs will decrease,
indicating that the ground conditions at the footing are less well
predicted by the sample. In this way, the degree of ‘site
understanding’ can be partially reflected by adjusting r. If a designer
Fig. 2. Averaging regions used to predict probability of bearing capacity failure.
has high confidence in their understanding of the ground parame-
ters under the footing being designed, then that corresponds to a
small value of r in this model. Conversely, low understanding of
ground properties under the footing corresponds to a large value
of r. In detail,

cf ¼
1
V2

f

Z
Vf

Z
Vf

qðg
�
� n

�
Þdg

�
d n

�
ð21aÞ

cs ¼
1
V2

s

Z
Vs

Z
Vs

qðg
�
� n

�
Þdg

�
d n

�
ð21bÞ

cfs ¼
1

VfVs

Z
Vf

Z
Vs

qðg
�
� n

�
Þdg

�
d n

�
ð21cÞ

where g
�
and n

�
are spatial positions and q returns the correlation

coefficient between two points in the ground separated by distance
g
�
� n

�
. In all of the examples considered here, q gives the correlation

between the ground properties transformed into Gaussian space. For
example, if c is assumed lognormally, as it is, then qðg

�
� n

�
Þ gives the

correlation coefficient between ln c at two points in the ground sep-
arated by distance g

�
� n

�
. Eq. (21) can be evaluated using Gauss

Quadrature or a similar numerical integrator. In this work, the cor-
relation coefficient is assumed to be Markovian in nature,

qðsÞ ¼ exp
�2jsj
h

� �
ð22Þ

where h is the correlation length (see, e.g., [7]).
The averaging volume of the sample, Vs, is usually at least

approximately known and will be one of the following values in
this study;

(1) for 1-D averaging, Vs ¼ D,
(2) for 2-D averaging, Vs ¼ Dx� D,
(3) for 3-D averaging, Vs ¼ Dx� Dx� D.

The main challenge at this point is to decide on the appropriate
size of the averaging volume, Vf . The geotechnical failure mecha-
nism below (or around) the foundation usually involves some aver-
aging of the strength or deformation properties of the ground and
the size of Vf should properly reflect the actual averaging. This
means that Vf is dependent on the size of the foundation itself,
which means that, strictly speaking, Vf is not known until after
the foundation is designed (which means that the resistance fac-
tors need to be known before Vf can be determined).

In some cases, the variance reduction factor, cf , and the average
correlation coefficient, cfs, are not very sensitive to fairly significant
changes in Vf . This means that Vf can sometimes be reasonably
approximated by using a ‘typical’ design, perhaps based on the
mean ground properties and a typical (or traditional) resistance
factor. In other cases, the variances and correlations are more sen-
sitive to the size of Vf , in which case an iterative approach provides
better results. If iteration is required, the basic algorithm to be
used is as follows;

(1) choose a reasonable starting value for the total resistance
factor ðWugÞ,

(2) find the minimum foundation dimensions which satisfy the
LRFD requirements (see Eq. (4)),

(3) set the Vf averaging domain as some appropriate function of
the foundation dimensions (this step will be discussed in
more detail for each geotechnical problem considered
shortly),

(4) compute cf ; cs, and cfs according to Eq. (21),

(5) use Eq. (20) to compute r2
lnW ,
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(6) update the total resistance factor ðWugÞ according to Eq.
(15). Also, compute the failure probability, pf , according to
Eq. (14) if desired. If the total resistance factor has changed
by only within some relative error tolerance (e.g., 0.001), or
if pf is within some relative error tolerance from the target
pm, then the iterations can stop. Otherwise, repeat from step
2 using the adjusted value of the total resistance factor.

Once the total resistance factor, ðWugÞ, has been determined for
a variety of values of the target failure probability, pm (see Table 1),
the consequence factor, W, is determined rather simply. Consider
again the bearing capacity problem and assume that the total resis-
tance factor has been determined for pm ¼ 1=1000 (low conse-
quence), pm ¼ 1=5000 (typical consequence) and pm ¼ 1=10;000
(high consequence). Denoting the corresponding total resistance
factors ðWuuguÞlow, ðWuuguÞtyp, and ðWuuguÞhigh, then assuming that

Wu ¼ 1:0 for the typical case, we get

low consequence : Wu ¼ ðWuuguÞlow
ðWuuguÞtyp

ð23aÞ

high consequence : Wu ¼
ðWuuguÞhigh
ðWuuguÞtyp

ð23bÞ
3. Factors for the ULS design of shallow foundations

The theory required to estimate the failure probability, and thus
the required resistance and consequence factors for the ULS bear-
ing capacity design of a shallow foundation, was presented in the
previous section. A specific case, with parameters as given in
Table 2, will be considered to illustrate the results. Note that the
mean values appearing in Table 2 are not important since Wuugu

depends primarily on the variance and spatial variability (correla-
tion length, h) of the ground. This means that the results presented
here are generally applicable for the typical levels of uncertainty in
the ground and load parameters assumed in Table 2, i.e.,
vc ¼ 0:3;v/ ¼ 0:2, and live and dead load coefficients of variation

of 0.3 and 0.15, respectively. The total design load, F̂Tu , assumes live
and dead load factors of aL ¼ 1:5 and aD ¼ 1:25 along with live and
dead load bias factors of 1.41 and 1.18, respectively. The load bias
factors are the ratio of the characteristic loads to the mean loads.
The values used here are as assumed in the study by Fenton
et al. [8]. This gives a total design load of

F̂T ¼ 1:5ð1:41Þð200Þ þ 1:25ð1:18Þð600Þ ¼ 1308 kN/m, as is also
shown in Table 2.

The main features of the ULS reliability-based design of a shal-
low foundation can be found in Fenton et al. [8]. They found that in
a 2-D analysis, Vf is well approximated by a square of dimension
C � C centered under the footing (see Fig. 2), where C is about
80% of the mean depth of the classical wedge failure zone given
by Prandtl,
Table 2
Parameters used in the investigation of required resistance and consequence factors
for the ULS design of shallow foundations.

Parameter Value

lc ; vc 100 kN/m, 0.3
l/; v/ 20�; 0:2
lL; vL 200 kN/m, 0.3
lD; vD 600 kN/m, 0.15

F̂Tu
1308 kN/m

Dx; H 0.15 m, 4.8 m
h 0.1–50 m
C ¼ 0:8
2
l̂B tan

p
4
þ l/

2

� �
ð24Þ

In the above, l̂B is an estimate of the mean footing width
obtained by evaluating Eq. (9) at the mean of the ground properties
with a reasonable estimate of the averageWuugu equal to about 0.7,

l̂B ¼ F̂Tu

0:7lclNc

ð25Þ

Using this result in Eq. (24) to define Vf ¼ C � C allows the
results of the previous section to be used to find the failure proba-
bility (Eq. (14)) and total resistance factor (Eq. (15)) required to
achieve a target failure probability, pm.

For the uncertainty levels given in Table 2, the resistance factors
required to achieve a typical lifetime maximum acceptable failure
probability of pm ¼ 1=5000 are shown in Fig. 3.

In Fig. 3, the correlation length, h, is varied from a low of 0.1 m
to a high of 50 m. Low values of h lead to soil properties varying
rapidly spatially, while high values mean that the soil properties
vary only slowly with position. A large correlation length, of say
h ¼ 50 m, means that soil samples taken well within 50 m from
the footing location (e.g. at r ¼ 10 m) will well predict the soil
properties under the footing so that lower failure probabilities
are expected. In turn, this means that for fixed target failure prob-
ability, the required resistance factor increases towards 1.0 as the
correlation length increases.

Interestingly, at the other extreme when the correlation length
becomes very small, the required resistance factor is seen again to
increase. The reason for this is that the characteristic value derived
from the soil sample is generally some form of average – and the
geometric average is used here. When h is smaller than the averag-
ing volume, the average itself tends towards the median, and
becomes equal to the median (with no variability) when h ¼ 0.
Since both the sample and the failure mechanism under the footing
involve geometric averaging, then as h ! 0, both the sample aver-
age and the average of the ground under the footing become the
same (equal to the median). In this case, the sample will again
accurately reflect the conditions under the footing, leading to
reduced failure probabilities, or, equivalently, increased required
resistance factors.

It is somewhere in between these two extremes that the failure
probability reaches a maximum. It turns out that it is when the
correlation length is approximately equal to the distance between
the sample and the footing that the sample gives the poorest pre-
diction of the conditions under the footing and the highest failure
probability or lowest resistance factor. This ‘worst case’ correlation
length can be seen in Fig. 3 to be around 2 m when r ¼ 0 m, around
5 m when r ¼ 5 m, and around 10 m when r ¼ 10 m.
Fig. 3. Resistance factors required to achieve pm ¼ 1=5000 (b ¼ 3:5) for the ULS
design of a shallow foundation (using coefficients of variation specified in Table 2).
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The authors note that the correlation length is fundamentally
difficult to estimate, since it is highly biased in the presence of cor-
relation (which is what it is trying to estimate). In other words, the
correlation length will often not be known in practice. The pres-
ence of a ‘‘worst case” correlation length is actually very valuable
for design since it relieves us of the requirement to actually deter-
mine the true correlation length. The ‘‘worst case” correlation
length can be directly used to yield conservative designs.

It can also be seen from Fig. 3, that if an intermediate level of
site understanding is assumed (corresponding to r ¼ 5 m), then
the worst case correlation length estimate of the required resis-
tance factor is about /gu ¼ 0:4. A typical resistance factor for bear-
ing capacity appearing in North American codes is about 0.5, so it
could be that Fig. 3 is erring on the conservative side. However, the
main value of probabilistic analyses such as presented here is to
allow the determination of relative changes in target resistance
factors as site understanding changes. For example, if the currently
accepted resistance factor for the bearing capacity design of a foun-
dation is 0.5, and it is assumed that typical site understanding cor-
responds to r ¼ 5 m, then Fig. 3 suggests that if site understanding
is reduced to r ¼ 10 m, then the required resistance factor should
be scaled down from 0.5 by the amount the r ¼ 5 curve reduces
to the r ¼ 10 curve at the worst case, ie to about
0:5ð0:31=0:37Þ ¼ 0:42.

Fig. 4 shows the low and high consequence factors, obtained
using Eq. (23). Although the consequence factor is supposed to
be primarily dependent on the target maximum acceptable failure
probability appropriate for the failure consequence, there is some
residual dependence on site understanding (r) and correlation
length (h). The dependence is slight, however, amounting to less
than 5% relative change for high consequence (Fig. 4b) and less
than 13% for low consequence (Fig. 4a). This dependence on r
Fig. 4. ULS consequence factors for shallow foundations required to adjust
pm ¼ 1=5000 (b ¼ 3:5) to low consequence pm ¼ 1=1000 (b ¼ 3:1) in (a) and to
high consequence pm ¼ 1=10;000 (b ¼ 3:7) in (b).
and h is negligible compared to the changes seen in the resistance
factor, which is supposed to depend on r and h, (see ugu in Fig. 3) of
up to 300%.

Noting that lower consequence factors result in lower failure
probability, it can be seen that if Wu is selected as 0.9 for high fail-
ure consequence cases, then the target maximum acceptable fail-
ure probability will be less than pm ¼ 1=10;000 for all cases of r
and h considered in Fig. 4b.

Since it is not so important to remain conservative when the
failure consequences are already low, Fig. 4a suggests that
Wu ¼ 1:15 might be appropriate for low failure consequence
designs.

4. Factors for the SLS design of shallow foundations

The determination of resistance and consequence factors for the
serviceability design of a shallow foundation involves using a spa-
tially variable elastic modulus field representation of the ground to
investigate failure probability. The details of this model can be
found in Fenton et al. [6]. Note that while the use of an elastic
model may not give the best estimate of the mean settlement of
a foundation, it is the spatial variability of the ground that is
important in the calibration of resistance and consequence factors.
The random elastic field model provides an excellent vehicle to
model spatial variability and its effect on the total resistance factor
Wsugs.

The actual (random) settlement of a footing is thus predicted
using Janbu’s [11] elastic formula,

d ¼ u1
FT

BEg
ð26Þ

where FT is the total load on the footing (assumed vertical), B is the
footing edge dimension (assumed square), Eg is the equivalent elas-
tic modulus as ‘seen’ by the footing; i.e., the spatially uniform elas-
tic modulus that gives the same settlement as the actual spatially
variable elastic modulus. Using the random finite element method
(RFEM), Fenton et al. [6] found that Eg was well approximated by
a geometric average of the elastic modulus in a volume
Vf ¼ B� B� H, where H is the depth to bedrock (not to exceed
about 2B). The influence factor u1 was determined by finite element
analysis [6] to be

u1 ¼ 0:61 1� e�1:18H=B
	 
 ð27Þ

Eq. (26) can be used to determine the ground resistance corre-
sponding to a given settlement, dmax. Replacing FT by the resistance
Rs and letting d ¼ dmax in Eq. (26) gives

Rs ¼ dmaxBEg

u1
ð28Þ

Replacing Eg with the estimate of the characteristic elastic mod-

ulus obtained from a soil sample, Ê, yields the characteristic
resistance

R̂s ¼ dmaxBÊ
u1

ð29Þ

which, when substituted into the LRFD Eq. (4b), taken at the equal-
ity gives

WsugsdmaxBÊ=u1 ¼ F̂Ts ð30Þ
which in turn allows dmax to be expressed as

dmax ¼ u1F̂Ts

WsugsBÊ
ð31Þ
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Serviceability failure occurs if the actual (random) settlement,
d, exceeds the serviceability limit, dmax, so that the failure
probability is

pf ¼ P½d > dmax� ¼ P FT
Ê
Eg

>
F̂Ts

Wsugs

" #
ð32Þ

which made use of Eq. (31). Note that FT ; Ê, and Eg are all random
and that Eq. (32) is identical in form to Eq. (11). In fact, if W is
now defined as

W ¼ FT
Ê
Eg

ð33Þ

then Eqs. (13)–(15) can be used to determine the failure probability
and required consequence and resistance factors for this SLS design
problem. The only small differences occur in Eq. (20), which now
becomes

r2
lnW ¼ r2

ln FT
þ r2

lnE cf þ cs � 2cfs
h i

ð34Þ

and in the averaging region under the footing shown in Fig. 2, which
now becomes Vf ¼ B� B� H.

Table 3 shows the parameters of the problem used to investi-
gate the consequence and resistance factors required for the SLS
design of a shallow foundation. As in the previous ULS example,
the choice in mean values is not important to the total resistance
factor, Wsugs – it is the coefficients of variation, vE and vFT , and
the correlation length h that are important.

In the study by Fenton et al. [6], the characteristic design load

was assumed equal to the median load, F̂Ts ¼ exp lln FT

n o
in order

to simplify the calculation of the total resistance factor in Eq. (15),
which becomes

Wsugs ¼ exp �brlnWf g ð35Þ

However, it may make more sense to choose F̂Ts ¼ lFT
, in which

case Eq. (15) would be used directly. In any case, the difference
between the mean and median load is generally negligible, so that
the median load can still be used as the characteristic design load
while still using Eq. (15).

The remaining issue is the computation of the variance reduc-
tion terms in Eq. (21). For this, the averaging region Vf must be
known, and it will not be known until after a total resistance factor
has been decided upon. The solution is to choose the footing width
B equal to some typical value, and the footing width obtained using
the median elastic modulus, Emed ¼ exp llnE

� �
was found to give

good results. The value of Emed is shown in Table 3 for the particular
example considered. Using this elastic modulus and solving the
LRFD Eq. (30) for the design footing width, B, leads to

B ¼ u1
F̂Ts

WsugsdmaxEmed

 !
¼ 0:61 1� e�1:18H=B	 
 F̂Ts

WsugsdmaxEmed

 !

ð36Þ
Table 3
Parameters used in the investigation of required resistance and consequence factors
for the SLS design of shallow foundations.

Parameter Value

lE; vE 30 MPa, 0.3
Emed 28.73 MPa
lFT ; vFT 2000 kN, 0.1

F̂Ts
1990 kN

Dx; H 0.2 m, 5 m
h 0.1–50 m
uo 0.6
which is non-linear in B and must be solved using an iterative root-
finding algorithm. The required footing width can be obtained by 1-
pt iteration,

Biþ1 ¼ 0:61 1� e�1:18H=Bi
	 
 F̂Ts

uodmaxEmed

 !
ð37Þ

for i ¼ 0;1; . . . with starting guess B0 ¼ 0:4F̂Ts=ðuodmaxEmedÞ. Note
that this iteration requires uo, which is a reasonable estimate of
Wsugs since the latter is not known until after Vf has been esti-
mated. In this study, a value of uo ¼ 0:6 was found to be reasonable.
The iterations stop when subsequent values of B differ by less than
some relative error tolerance (0.0001 in this study).

The resistance factors required to achieve a typical lifetime
maximum acceptable failure probability of pm ¼ 1=500 for service-
ability of a shallow foundation are shown in Fig. 5.

As in Fig. 3, a ‘worst case’ correlation length is clearly visible in
Fig. 5 which, again, is approximately equal to the distance between
the footing and the sample location.

The consequence factors shown in Fig. 6 are very similar to
those seen for SLS in Fig. 4, suggesting thatWs ’ Wu. This similarity
will be seen in all four geotechnical problems considered here.

5. Factors for the ULS design of deep foundations

To study the ULS failure probability, and resulting required
resistance factors, of deep foundations, the pile and soil sample
configuration shown in Fig. 7 is considered. Now H is the pile
length, and D is the depth of the sample. Since this is an ultimate
resistance problem, the resistance is due to bearing resistance
under the pile tip and due to cohesive and/or frictional resistance
along the pile surface. If the tip bearing resistance is ignored, then
the ultimate resistance is derived from shear resistance along the
pile surface, which means that Vf is a one-dimensional average
along the length of the pile. A 1-D average is appropriate if the pile
diameter is small relative to the correlation length, which is prob-
ably a reasonable assumption. Similarly, the averaging region for
the sample will also be assumed here to be one-dimensional,
which again is probably reasonable since Dx is generally quite
small relative to (at least the worst case) correlation length.

Following the results and methodology presented by Naghibi
and Fenton [17], the pile is assumed to be in a cohesive soil (the
frictional case is handled similarly) and is designed using the a
method (see, e.g., [4]). The design pile length is thus obtained by
satisfying the LRFD requirement of Eq. (4a) to give

H ¼ F̂Tu

Wuugupaĉ
ð38Þ
Fig. 5. Resistance factors required to achieve pm ¼ 1=500 (b ¼ 2:9) for the service-
ability design of a shallow foundation (vE ¼ 0:3).



Fig. 6. SLS consequence factors for shallow foundations required to adjust
pm ¼ 1=500 (b ¼ 2:9) to low consequence pm ¼ 1=100 (b ¼ 2:3) in (a) and to high
consequence pm ¼ 1=1000 (b ¼ 3:1) in (b).

Fig. 7. Relative location of pile and soil sample.

Table 4
Parameters used in the investigation of required resistance and consequence factors
for the ULS design of deep foundations.

Parameter Value

lc ; vc 50 kPa, 0.3
lL; vL 20 kN, 0.3
lD; vD 60 kN, 0.15

F̂Tu
131 kN

lFT ; vFT 80 kN, 0.14
D 4 m
h 0.1–50 m
uo 0.7

Fig. 8. Resistance factors required to achieve pm ¼ 1=5000 (b ¼ 3:5) for the ULS
design of a deep foundation.
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where p is the pile perimeter length, a is the adhesion coefficient,
and ĉ is the characteristic cohesion along the pile. Although the
actual cohesion seen as the average along the pile, cg , and the sam-
ple estimate of that cohesion, ĉ, are both arithmetic averages, as is
appropriate, they are also both deemed to be lognormally dis-
tributed. Although, the lognormal distribution is also reasonable,
it means that the mean and variance of cg and ĉ have to be approx-
imated. The first order approximations used by Naghibi and Fenton
[17] give the same variances as if geometric averages were used, so
that Eq. (21) can still be used to provide the needed variance reduc-
tions and average correlation for q being the correlation coefficient
between ln c at any two points.
It can be seen from Eq. (38) that the pile length, and therefore
the averaging region Vf ¼ H, depends on the total resistance factor,
ðWuuguÞ. This suggests that an iteration might be required, as sug-
gested at the end of the section on ‘‘Theoretical failure probability
and derived design factors”. However, the authors found that this
wasn’t necessary and that using a fixed length for Vf of

Vf ¼ F̂Tu

uopalc
ð39Þ

gave reasonably accurate failure probability predictions, in compar-
ison to RFEM simulations. In Eq. (39), uo is a moderate resistance
factor whose value is taken to be 0.7. The remaining parameters
considered for this deep foundation ULS design problem are shown
in Table 4. Note that in the failure probability for this case,

pf ¼ P FT
ĉ
cg

>
F̂Tu

Wuugu

" #
¼ P lnW > ln F̂TuWuugu

� �h i

¼ 1�U
ln F̂Tu=Wuugu

� �
� lln FT

rln FT

0
@

1
A ð40Þ

the parameters p and a cancel out and so are not needed to estimate
Wuugu.

Fig. 8 shows the resistance factors required to achieve
pm ¼ 1=5000 for various sampling distances (site understanding)
and correlation lengths. As usual, there is a distinct ‘worst case’
correlation length which is approximately equal to the distance
to the sample location, r. When r is equal to zero, the pile and sam-
ple are at the same location. This means that the sample will basi-
cally be an excellent to identical indicator of the cohesion along the
pile so that the failure probability will go to zero or the resistance
factor will go to 1.0. The only reason that the resistance factor
shows a little dip below 1.0 is because the sample length,



Fig. 9. ULS consequence factors for deep foundations required to adjust
pm ¼ 1=5000 (b ¼ 3:5) to low consequence pm ¼ 1=1000 (b ¼ 3:1) in (a) and to
high consequence pm ¼ 1=10;000 (b ¼ 3:7) in (b).

Table 5
Parameters used in the investigation of required resistance and consequence factors
for the SLS design of deep foundations.

Parameter Value

lE; vE 30 MPa, 0.3
lFT ; vFT 1600 kN, 0.1

F̂Ts
1600 kN

dmax 0.025 m
Dx; D 0.3 m, 10 m
h 0.1–50 m

120 G.A. Fenton et al. / Computers and Geotechnics 78 (2016) 110–122
D ¼ 4 m, is not generally the same as the pile length, H, which
means that the sample will not generally be precisely equal to
the actual cohesion along the pile. If the r ¼ 5 m case is considered,
the worst case correlation length suggests that ugu ¼ 0:5 should be
used in design.

Fig. 9 illustrates the consequence factors required to shift the
target maximum acceptable failure probability, pm, for low and
high failure consequences. Again, the factors are virtually identical
to those seen in Figs. 6 and 4 for SLS and ULS design of shallow
foundations and Wu ¼ 0:9 is conservative for high failure conse-
quences while Wu ¼ 1:15 is reasonable for low failure
consequences.

6. Factors for the SLS design of deep foundations

The last geotechnical problem considered in this paper is the
SLS design of deep foundations. The results presented here are
taken from the work presented by Naghibi et al. [15,16] and the
basic pile/sample geometry is identical to that shown in Fig. 7.
Since this is a serviceability design problem, the ground is repre-
sented as a spatially variable elastic modulus field and the required
size of the averaging regions was estimated using the random
finite element method (RFEM), just as was done for the SLS design
of shallow foundations previously. Despite the similarity between
the problems, the SLS design of deep foundations was much more
difficult than any of the other problems for two reasons:

(1) the averaging volume Vf was not as clearly defined as it was
for shallow foundations. For shallow foundations, it is pretty
clear that settlement directly compresses the region below
the foundation and choosing Vf ¼ B� B� H (where H is
depth to bedrock) seems natural. For deep foundations,
however, the settlement of the pile is due to both elastic
deformation of the pile itself along with the deformation of
the soil surrounding the pile. There was no a priori natural
averaging domain for Vf and it had to be found by trial-
and-error.

(2) in the SLS design of a shallow foundation, the settlement can
be reduced to zero simply by increasing the foundation area
indefinitely (flexibility of the footing itself was ignored).
However, for a given pile, there is a limit to how small the
settlement can be made as the pile length is increased. This
is because when the pile becomes too long, its own deforma-
tion becomes the main contributor to the settlement at the
pile head. In other words, when the load is too large, or
the maximum settlement, dmax, is too small there may not
be a pile length H which satisfies the requirement that
d < dmax – multiple piles may be required. If this happens,
the overall reliability analysis becomes very much more
complicated. See Naghibi et al. [15] for an analytical solution
to this problem.

In this paper only the design of a single pile is considered, which
means that attention is restricted to those load, maximum dis-
placement, and pile attributes (diameter and elastic modulus)
combinations that only require a single pile to avoid entering the
serviceability limit state.

Table 5 shows the parameters of the problem used to investi-
gate the consequence and resistance factors required for the SLS
design of a deep foundation. As usual, the choice in mean values
is not important to the total resistance factor, Wsugs, which
depends primarily on the coefficients of variation, vE and vFT ,
and on the correlation length h.

The pile settlement is given by Naghibi et al. [16] to be

d ¼ FT

Egd
Ip ð41Þ

where Ip is the settlement influence factor. Naghibi et al. [16] devel-
oped a regression for Ip,

Ip ¼ a0 þ 1
H=dþ a1ð Þa2


 �
ð42Þ

where the regression coefficients a0; a1 and a2 are functions of the

pile to soil stiffness ratio. Replacing Eg with the characteristic Ê,
and setting d ¼ dmax leads to the following LRFD requirement from
Eq. (4b),

Wsugs
dmaxdÊ

Ip

 !
P F̂Ts ð43Þ

which, using Eq. (42), can be inverted to solve for the pile length, H,
required to have the predicted settlement (using the characteristic
elastic modulus) just equal dmax,

H ¼ d
1

WsugsdmaxdÊ=F̂Ts

� �
� a0

0
@

1
A

1=a2

� a1

2
64

3
75 ð44Þ



Fig. 10. Resistance factors required to achieve pm ¼ 1=500 (b ¼ 2:9) for the
serviceability design of a deep foundation.

Fig. 11. SLS consequence factors for deep foundations required to adjust
pm ¼ 1=500 (b ¼ 2:9) to low consequence pm ¼ 1=100 (b ¼ 2:3) in (a) and to high
consequence pm ¼ 1=1000 (b ¼ 3:1) in (b).
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The probability of failure, pf , the definition of W, and the vari-
ance of lnW are as given for the SLS design of shallow foundations
in Eqs. (32)–(34), which in turn are just special cases of the unified
theory given in the section entitled ‘‘Theoretical failure probability
and derived design factors”. The main complication, as mentioned
above, was determining the appropriate averaging volume, Vf .
After much trial-and-error an averaging volume of
Vf ¼ 2� 2� 2H was found to give the best results. What this
means is that a rectangular ‘tube’ of soil having width 2 m and
depth equal to twice the pile length (also in metres) was found
to be the volume of ‘actively’ deforming soil around the pile.

Having established Vf ¼ 2� 2� 2H, an iteration was required
to determine ðWsugsÞ since the pile length H is dependent on the
resistance factor (see Eq. (44)). The determination of ðWsugsÞ via
Eq. (15) was carried out using a bisection algorithm to find the
root, with respect to ðWsugsÞ, of pf � pm ¼ 0. In other words, using
Eq. (14), the value of ðWsugsÞ which satisfies

U
ln Wsugs

� �
þ llnW � ln F̂T

rlnW

0
@

1
A ¼ pm ð45Þ

was found by bisection, bearing in mind that H is required to find
rlnW via Eqs. (44), (21) and (20). The results, for the typical conse-
quence level (pm ¼ 1=500) are shown in Fig. 10.

Besides the presence again of a worst case correlation length in
Fig. 10, it is of note that even when r ¼ 0, the resistance factor is
quite low, around ugs ¼ 0:7. This is because, although the sample
is taken at the pile location, there is a very large difference between
Vf and Vs. Even if the sample happened to be of the same length as
the pile, the sample has cross-sectional area of 0.09 m2, whereas
the averaging volume around the pile includes much more varia-
tion, having a cross-sectional area of 4 m2.

Fig. 11 shows the consequence factors required in the case of
the SLS design of deep foundations. These are virtually identical
to those seen earlier and so do not need further discussion. In addi-
tion, the use of a consequence factor ofWs ¼ 0:9 remains conserva-
tive for the high failure consequence case, and Ws ¼ 1:15 remains
reasonable for the low failure consequence case.
7. Conclusions

The paper presents a unified theory which allows the estima-
tion of both failure probability and the resistance and consequence
factors required to achieve a target failure probability. Perhaps the
most important component of this unified theory is Eq. (20), which
in a more generalized form appears as

r2
lnW ¼ r2

ln FT
þ r2

lnR cf þ cs � 2cfs
h i

ð46Þ

where R denotes ‘resistance’ and is replaced by the ground param-
eter(s) which are important for the problem. This equation can then
be used in Eq. (14), to determine failure probability, or in Eq. (15) to
determine required resistance factors given a target reliability. Eq.
(46) includes the following components;

(1) variability of the applied load (rln FT ),
(2) variability of the ground (rlnR),
(3) variance reduction due to averaging of the ground properties

under and around the foundation (cf ),
(4) variance reduction due to averaging of the ground properties

found in the soil sample (cs), and perhaps most importantly,
(5) correlation between the sample and the properties of the

ground under and around the foundation (cfs).

The last allows for a reasonable modeling of ‘site understanding’
so that resistance factors can be selected based on how well the
response of the ground supporting the foundation can be pre-
dicted. The distance r used in this study can be used as a proxy
to reflect general site and model understanding, where ‘model
understanding’ refers to how accurate the ground response predic-
tion model is. As site and model understanding decreases, the cor-
responding value of r selected in this study would be increased.
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The ‘typical’ resistance factors, ugu and ugs, are similar to those
in current practice for ULS design, but are significantly lower than
those in current practice for SLS design. It is believed that the rea-
son that SLS design uses resistance factors of 1.0 (or close to 1.0) is
because traditional approaches to estimating foundation settle-
ment have their own built in conservatism. The use of the SLS
resistance factors suggested in this paper presume the use of a
more accurate unbiased estimate of the mean settlement – the
resistance factor then takes care of the variability around that
mean.

The consequence factor is used to adjust the target failure prob-
ability from the ‘typical’ level to either a high or low consequence
level. So, for example, the high consequence factor for ULS is
adjusting pm ¼ 1=5000 to pm ¼ 1=10;000, i.e., dividing the target
failure probability in half. The high consequence factor for SLS is
adjusting pm ¼ 1=500 to pm ¼ 1=1000, again dividing the target
failure probability in half. Because the relative change in target
probability is the same, it is reasonable to expect that the conse-
quence factors will be similar between SLS and ULS. A review of
Figs. 4, 6, 9 and 11 shows that the consequence factors are very
similar over all four geotechnical problems, meaning that they
are largely independent of the limit state under consideration, so
long as the target maximum acceptable failure probabilities are
scaled similarly. Thus, the distinction between Ws and Wu can be
dropped, and a common consequence factor, W, used. The smaller
the consequence factor, the lower the target failure probability, pm.
Thus, for high failure consequence systems, a W value of 0.9 is rec-
ommended, since this was seen to be conservative (pf < pm) for all
cases considered.

For low failure consequence systems, it is not necessary to be
quite so conservative (because of the low failure consequences),
so a value of W ¼ 1:15 appears to be reasonable. This is slightly
unconservative for high site understanding (r ¼ 0 m) but about
right for typical site understanding (r ¼ 5 m) and somewhat con-
servative for low site understanding (r ¼ 10 m).

Finally, it is noted that the use of a separate variable resistance
factor, to account for uncertainty in the ground response, and a
variable consequence factor, to adjust the target reliability, is a
concept that has now been adopted in the 2014 edition of the
Canadian Highway Bridge Design code [3].
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