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Abstract The random finite element method (RFEM) combines the
random field theory and finite element method in the framework of
Monte Carlo simulation. It has been applied to a wide range of geotech-
nical problems such as slope stability, bearing capacity and the consol-
idation of soft soils. When the RFEM was first developed, direct Monte
Carlo simulation was used. If the probability of failure (pf) is small, the
direct Monte Carlo simulation requires a large number of simulations.
Subset simulation is one of most efficient variance reduction techniques
for the simulation of small pf. It has been recently proposed to use subset
simulation instead of direct Monte Carlo simulation in RFEM. It is
noted, however, that subset simulation requires calculation of the factor
of safety (FS), while directMonte Carlo requires only the examination of
failure or non-failure. The search for the FS in RFEM could be a tedious
task. For example, the search for the FS of slope stability by the strength
reduction method (SRM) usually requires much more computational
time than a failure or non-failure checking. In this paper, the subset
simulation is combined with RFEM, but the need for the search of FS is
eliminated. The value of yield function in an elastoplastic finite element
analysis is used to measure the safety margin instead of the FS. Numer-
ical experiments show that the proposed approach gives the same level
of accuracy as the traditional subset simulation based on FS, but the
computational time is significantly reduced. Although only examples of
slope stability are given, the proposed approach will generally work for
other types of geotechnical applications.

Keywords Slope stability . Probability of failure . Random
field . Finite element method

Introduction
By the very nature of their origins, geotechnical materials such as
soils and rocks are variable in their engineering properties. This
variability is rarely taken into account directly in traditional geo-
technical analysis, rather some Brepresentative average^ or
Bappropriately conservative^ property is usually assumed to act
across the whole region of interest. The search for the safety of
geotechnical projects is calculated using analytical methods and
quantified by a safety factor to keep the pf to an acceptable level.
The FS itself can be overly conservative in some cases (Duncan
2000). It is common to use the same FS for different types of
application without regard to the degree of uncertainty involved in
its calculation. Through regulation or tradition, the same safety
factor is often applied to conditions that involve widely varying
degrees of uncertainty. This approach does not factor in the level
of variability nor the consequences of failure. High probability
events attracting a high FS may have negligible failure conse-
quences and should be designed more economically. The deter-
ministic approach also does not necessarily reflect the risk
tolerance of the client or contractor and does not allow them to
make informed decisions. This is not a very logical strategy
(Duncan 2000) and adoption of probabilistic methods, where risk,
defined as a function of probability and consequence, is explicitly
quantified would be a better approach.

In the last two decades, the geotechnical community has begun to
use probabilistic methods to take uncertainties directly into account
(Fenton and Griffiths 2008). On the one hand, statistical methods
and random field theory (Vanmarcke 1984) are used to characterize
and model spatial variability explicitly (Jaksa et al. 2005; Phoon and
Kulhawy 1999) and, on the other hand, various probabilisticmethods
ranging from simple methods such as first order second moment
(FOSM) method, first order reliability method (FORM) to more
advanced random finite element method (RFEM) (Griffiths and
Fenton 2000; Griffiths and Fenton 2004) are used to predict the
reliability of geotechnical structures. Huang et al. (2010b) showed,
however, that simple methods (e.g. FOSM and FORM) can lead to
unrealistic results because spatial variability cannot be properly
modelled. Random field theory combined with FEM provides a
systematic way to study the effects of spatial variability of soil
properties on the reliability of geotechnical structures (Griffiths
et al. 2009; Huang et al. 2010; Jiang et al. 2015; Jiang et al. 2014).

When RFEM was first developed, the direct Monte Carlo simula-
tion was used. It is well known that direct Monte Carlo simulation
becomes computationally time-consuming when estimating small pf.
The efficiency of Monte Carlo simulation can be enhanced by the
application of variance reduction methods such as importance sam-
pling (Au and Beck 2003) or subset simulation (Au and Beck 2001;
Papaioannou et al. 2015). In problems with a large number of ran-
dom variables, the Euclidean norm of the importance sampling
weighting becomes unbounded so that the importance sampling is
not applicable. Subset simulation turns out to be efficient in simu-
lating small pf even in high dimensions. Li et al. (2015) combined
RFEM with subset simulation to simulate small pf of slopes. Howev-
er, the efficiency of subset simulation was not investigated. As will be
shown later in this paper, if the search for FS is needed, subset
simulation actually costs more computational time than direct Mon-
te Carlo simulation for a given level of accuracy. This paper is
specifically aimed at significantly improving the efficiency of esti-
mating slope failure probabilities—especially where these probabil-
ities are small—by avoiding having to estimate the slope’s factor of
safety for every realization. Estimating the factor of safety for a single
realization involves repeating the entire non-linear finite element
analysis for each of a sequence of strength reduction factors (SRF)
until the largest SRF which just leads to slope failure is found. The
computational overhead of having to repeat this sequence of finite
element analyses for each realization within the subset simulation
algorithm is enormous. The proposed method avoids having to
search for the factor of safety, leading to a much more efficient
approach to estimating the probability of slope failure. It is proposed
that the value of yield function can be used as an indication of safety
margin. Numerical results show that the computational time can be
reduced by a factor of more than forty without losing accuracy.

In BSubset simulation for small probability of failure^ section,
direct Monte Carlo and subset simulation are compared and
reviewed. It is shown that direct Monte Carlo simulation does
not need to search for the FS in slope stability analysis while the
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traditional subset simulation method does. In BDeterministic fac-
tor of safety analysis of slope by FEM^ section, the strength
reduction method (SRM) for obtaining the FS of slopes is
reviewed. It is shown that the SRM requires more computational
time than direct failure checking. In BRandom finite element
method by subset simulation without the search for FS^ section,
the RFEM is combined with subset simulation without computing
the FS. Instead of using the FS as an indicator of safety margin, the
total value of the yield function at all Gauss points is used as a
measure of safety margin. Examples are given in BExamples^
section. It is shown that subset simulation including the searching
for FS actually requires more computational time than direct
Monte Carlo simulation. If the searching for FS is avoided, the
computational time can be reduced by a factor of more than 40
between the two subset simulation methods considered. Conclud-
ing remarks are provided in BConcluding remarks^ section.

Subset simulation for small probability of failure
The pf of a system is computed as:

pf ¼ P y xð Þ≤0ð Þ ¼
Z

y xð Þ≤0

f X xð Þdx ð1Þ

where fX(x) is the joint probability density function (PDF) of the
input variables X and y is the limit state function and y(x) < 0
means failure. Limit states could relate to strength failure, service-
ability failure, or anything else that describes unsatisfactory per-
formance. If the FS is used to quantify the safety margin, the limit
state function can be written as:

y xð Þ ¼ FS−1 ð2Þ

Direct integration of Eq. (1) is usually impossible since many
geotechnical problems do not have exact analytical solutions to the
deterministic problem (e.g. slope stability problem). Monte Carlo
simulation is commonly used as:

pf ≈
1

Nsim

X
i¼1

Nsim

I F xið Þ ð3Þ

where Nsim is the number of simulations, xi is the ith sample of X,
and

I F xið Þ ¼ 1; y xið Þ≤0
0; y xið Þ > 0

�
ð4Þ

Eq. (4) requires a deterministic analysis to check whether the
sample fails or not. It should be noted, however, that this does not
necessarily mean that the search for FS is needed. For example, in
slope stability analysis, failure can be checked without using SRM,
but by merely checking to see if the current realization fails to
converge, implying stability failure.

The direct Monte Carlo simulation is robust and its efficiency does
not depend on the dimension of X. Because IF is a Bernoulli random
variable, the coefficient of variation of the estimate of pf is (for small pf)

Vp f
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf

� �
pf Nsim

vuut ð5Þ

It can be seen from Eq. (5) that direct Monte Carlo simulation
requires a large number of simulations when pf is very small. The
subset simulation algorithm (Au and Beck 2001) provides an efficient
algorithm for the estimation of small pf. The basic idea of subset
simulation is to express the pf as a product of a sequence of conditional
probabilities:

pf ¼ P1 ∏
m−1

i¼1
P Fiþ1 Fijð Þ ð6Þ

This can be achieved by defining a decreasing sequence of
failure events. For example, if failure of a system is defined as
FS ≤ 1, one can define a decreasing sequence of intermediate
thresholds FS1 > FS2 >… > FSm = 1, such that:

pf ¼ P FS≤1ð Þ ¼ P FS≤ FS1ð Þ∏
m−1

i¼1
P FS≤ FSiþ1 FS≤ FSijð Þ ð7Þ

where FSm = 1.
It can be seen that the intermediate conditional probability

P(FS≤ FSi+ 1|FS≤ FSi) is larger than P(FS≤ 1) and can be estimated by
a smaller number of simulations, denoted asN. It is not clear beforehand
how to choose the sequence of intermediate thresholds. Another option
is to set the conditional probability P(FS≤ FSi+ 1|FS≤ FSi) to a fixed value
P0, and the intermediate thresholds can be chosen as the (1− P0)N largest
values among theNnumber of simulated FS. The simulation stopswhen
P(FS≤ 1|FS≤ FSm− 1) ≥P0. The P0 is chosen so thatN= 1/P0 is an integer.

The question left is how to compute the conditional probability
P(FS ≤ FSi + 1|FS ≤ FSi). Au and Beck (2001) used the modified Me-
tropolis algorithm. The modified Metropolis algorithm is based on
a component-wise sample generation to avoid the small accep-
tance rate of the original Metropolis algorithm sampler in high
dimensions. The method requires that the random variable space
be independent. Fortunately, random fields are usually generated
in independent standard normal space first and then transferred
to real space using an appropriate algorithm. This means that
RFEM can be driven in standard normal space by subset
simulation.

The subset simulation based on the modified Metropolis algo-
rithm can be summarized as:

1. m = 1, conduct N RFEM simulations. For each sample,
evaluate the FS and sort them in ascending order
FS1 < FS2 < ⋅⋅⋅FSNP0þ1 < ⋯ < FSN .

2. Set m =m + 1. For each of the samples with FS < FSNP0þ1,
generate Ni = 1/P0 new samples according to the modified
Metropolis algorithm:

(a) For each component xk, k= 1, ⋅ ⋅ ⋅, d, where d is the dimen-
sion ofX, generate candidate xk,c using a symmetric proposal
distribution q(⋅|xk,i− 1) centred at xk,i− 1, where subscript i− 1
refers to current sample. The standard normal distribution is
usually used for the proposal distribution.

Take

xk;i ¼ xk;c with probability α
xk;i−1 with probability 1−α

�
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where subscript i refers to the next sample, and

α ¼ min 1;
p xk;i−1
� �
p xk;c
� �

( )

and p is the probability density function of the target distribu-
tion, which in this present study, is the Standard Normal Distri-
bution for the generation of random fields.

(b) For each new sample, generate a random field, map it
onto the finite element mesh, and evaluate the FS. If
FS < FSNP0þ1, accept the new sample, otherwise keep
the current sample.

3, Sort the newly obtained FS in ascending order. If FSNP0þ1 < 1,

pf ¼ p0
m number of samples with FS≤ 1

N and stop, otherwise go to 2.

If the proposal distribution is not centred at the current sample,
or it is unsymmetric, the acceptance criterion needs to be adjusted
as:

α ¼ min 1;
p xk;i−1
� �

q xk;i−1
���xk;c� �

p xk;c
� �

q xk;c
���xk;i−1� �

8<
:

9=
;

This is called Metropolis-Hasting algorithm (Hastings 1970).
The common choices of proposal distribution are the uniform
and normal distributions centred at the current sample. The opti-
mal intermediate probability of failure P0 lies in the interval
0.1∼0.3 (Au et al. 2007).

Although subset simulation is efficient in simulating small pf, it
requires the evaluation of limit state function so that the interme-
diate pf can be calculated. In slope stability analysis, this is usually
done by searching for the FS by the SRM. The SRM takes much
more computational time than direct failure checking. If the
search for FS can be avoided in subset simulation, the efficiency
of subset simulation can be significantly improved.
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Deterministic factor of safety analysis of slope by FEM
Limit equilibrium method (LEM) and finite element method
(FEM) are commonly used to estimate the FS of slopes. Compared
to the LEM, the FEM makes no assumption in advance about the
shape or location of the yield surface. Failure occurs naturally
through the zones within the soil mass in which the soil shear
strength is unable to sustain the applied shear stresses (Griffiths
and Lane 1999). This feature is especially important when the
strengths of soils vary spatially.

The starting point of elastoplastic FEM analysis is that the
strength of soils is governed by a field criterion (all called yield
function in this paper). The Mohr-Coulomb criterion remains the
one most widely used in geotechnical practice. In terms of princi-
pal stresses and assuming a compression negative sign convention,
Mohr-Coulomb criterion may be written as:

f ¼ 1
2

σmax−σminð Þ þ 1
2

σmax þ σminð Þsinϕ0
−c

0
cosϕ

0 ð8Þ

where σmax and σmin are the maximum (least compressive) and the
minimum (most compressive) principal stresses, respectively, and
ϕ′ and c′ are the friction angle and cohesion of the soil.

In elastoplastic FEM analysis, the strain rate ε: is split into an
elastic component εe and a plastic component εp

ε
:¼ε

:eþε
:p ð9Þ

Based on this decomposition, the elastic stress–strain relation-
ship can be rewritten as:

σ
:¼De ε

:
−ε
:p� �

ð10Þ

where De is the elastic stress–strain tensor.Plastic strain rates for
non-associated plasticity are assumed to follow the relations:

ε
:p ¼ λ

:
q and q ¼ ∂g

∂σ
ð11Þ

where g is the plastic potential function, λ≥0 is the consistency param-
eter which represents the magnitude of the plastic flow and q is the flow
direction given by the derivatives of the plastic potential function g with
respect to stress. It is noted that the plastic strain-increments are asso-
ciated with vectors perpendicular to the plastic potential surface.

In the FEM analysis of slope stability, the soil is initially assumed
to be elastic and the model generates normal and shear stresses at all
Gauss points within themesh. These stresses are then compared with
the yield criterion. If the stresses at a particular Gauss point lie within
the yield envelope, then that location is assumed to remain elastic. If
the stresses lie on or outside the yield surface, then that location is
assumed to be yielding. When the stresses lie outside the yield
surface, they have to be returned to the yield surface. Returning
stresses to the yield surface is usually called the numerical integra-
tion of the constitutive equations (Huang and Griffiths 2008; Huang
and Griffiths 2009). Overall, shear failure occurs when a sufficient
number of Gauss points have yielded to allow a mechanism to
develop. In this case, the algorithm is unable to converge within a
user-defined iteration ceiling, the implication being that no stress
distribution can be found that is simultaneously able to satisfy both
the yield criterion and global equilibrium. If the algorithm is unable
to satisfy these criteria, Bfailure^ is said to have occurred.

It is noted that the above FEM analysis checks only if the slope
fails or not. The safety margin is yet to be found. In deterministic
approaches, the safety margin is usually quantified by the FS. The
FS is the number by which the original shear strength parameters
must be divided in order to bring the slope to the point of failure.
For a detailed description of finite element slope stability analysis,
the reader is referred to Griffiths and Lane (1999).

c f ¼ c
FS

and ϕ f ¼ arctan
tanϕ
FS

	 

ð12Þ
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To obtain the FS, it is necessary to initiate a systematic search
for the value of SRF that will just cause the slope to fail at which
point FS = SRF. This is usually done by the bisection method,
which costs more computational time than just checking failure.

Random finite element method by subset simulation without the
search for FS
The RFEM is currently the most advanced probabilistic methods for
slope stability. It involves the generation and mapping of a random
field of properties onto a finite elementmesh. Full account is taken of
local averaging and variance reduction (Fenton and Vanmarcke
1990) over each element, and an exponentially decaying spatial
correlation function is incorporated. The random field is initially
generated and properties assigned to the elements. After application
of gravity loads, if the algorithm is unable to converge within a user-
defined iteration ceiling, failure is said to have occurred. The analysis
is repeated numerous times using Monte Carlo simulations. Each
realization of the Monte Carlo process involves the same mean,
standard deviation and spatial correlation length of soil properties.
However, the spatial distribution of properties varies from one
realization to the next. Following a Bsufficient^ number of realiza-
tions, the pf can be easily estimated by dividing the number of
failures by the total number of simulations. Details of RFEM can
be found in Griffiths and Fenton (2000) and Griffiths and Fenton
(2004). Figure 1 shows the flow chart of RFEM by direct Monte Carlo
simulation. It is noted that no searching for FS is needed.

It is well known that direct Monte Carlo simulation becomes
computationally expensive when estimating small pf. Since the random
field in RFEM is generated in the underlying normal space, it is easy to
use subset simulation. Li et al. (2015)) combined RFEM with subset
simulation to estimate small pf of slopes. It was shown that subset
simulation takes fewer simulations than direct Monte Carlo simulation
for a given level of accuracy. The general procedure of RFEM by subset
simulation with the search for FS is summarized in Fig. 2.

In subset simulation, it is necessary to analyze the safety margin
of each simulation so that the failure region in the probability space

can be probed efficiently, but the price of searching for safety mar-
gins can be very high. This is especially true when the SRM is used to
search for the FS. The resulting overall computational time of subset
RFEM simulation may be more than direct Monte Carlo RFEM
simulation. It is thus desirable to avoid the search for FS. It is noted
that only the relative safety margin is needed in subset simulation. In
a regular elastoplastic FEM analysis, the value of the yield function
Eq. (8), denoted as FY hereafter, is an indicator of the safety margin.
It can be used to compare the relative safety margins of all simula-
tions from a set of subset simulation. An advantage of FS over FY is
that FS is also an indicator of failure. If FS < 1, it means failure has
occurred. However, although FY can be used as an indicator of safety
margin, it cannot be used as an indicator of overall failure. Fortu-
nately, the regular elastoplastic FEM analysis reveals if the slope fails
or not. As mentioned previously, if the algorithm is unable to
converge within a user-defined iteration ceiling, failure is said to
have occurred. The indicator of failure, denoted as IF, is set to one for
failure and zero for non-failure in this paper. In summary, the search
for the FS by the SRM can be replaced by recording the cumulative
value of the yield function FY and the failure indicator IF. As will be
shown, it was found that the cumulative value of the yield function of
all Gauss points from all elastoplastic iterations as a replacement for
FS worked very well. The flow chart of RFEM by subset simulation
without the search for FS is summarized in Fig. 3.

Examples
An 2:1 (angle 26.6∘) undrained (ϕu=0) slope is considered with the
slope profile shown in Fig. 4. The slope has height H= 10.0 m with
depth ratioD= 2, soil unit weight γsat(or γ) = 20.0 kN/m3, deterministic
shear strength cu= 57.82 kPa. Using the SRMwith an iteration ceiling of
1000, the FS of the slope was found to be 1.69. The search for FS is
shown in Fig. 5. It can be seen from Fig. 5 that there are totally 9 steps of
strength reduction. At step 2 when SRF = 1, only 21 elastoplastic itera-
tions were needed to reduce unbalanced loads to be significantly
smaller than the applied loads. If the strength reduction is conducted
to search for FS, the total number of elastoplastic iterations over 9 steps

Table 1 Three undrained slopes

μcu (kPa) Vcu
θ (m)

Slope 1 57.82 0.2 4000

Slope 2 50.00 0.3 10

Slope 3 50.00 0.3 5

 (kPa)uc

Fig. 6 A typical simulation with θ = 10m
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of strength reduction is 3917. This means that the search for FS is
roughly 190 times more expensive than simply checking for failure.

Because the FS is linearly proportional to the undrained shear
strength for homogeneous undrained slopes, the undrained shear
strength corresponding to FS = 1 is cu,FS = 1 = 34.21 kPa.

If the undrained shear strength cu is assumed to be a lognor-
mally distributed random variable with mean μcu ¼ 57:82kPa and
coefficient of variation Vcu ¼ 0:2, the corresponding underlying
normal mean and standard deviation are

σlncu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ V2

cu

n or
¼ 0:20 ð13Þ

μlncu ¼ lnμcu−
1
2
σ2
lncu ¼ 0:50 ð14Þ

There is only one random variable, so p f is simply equal to the
probability that the shear strength parameter cu will be less than
cu,FS = 1 = 34.21. The p f is therefore given by:

pf ¼ p cu < 34:21½ � ¼ Φ
ln34:21−μlncu

σlncu

	 

¼ 0:0055 ð15Þ

The undrained shear strength cu is assumed to be a lognormally
distributed random field with spatial correlation length θ of
4000 m. The exponential correlation function is used. The p f

estimated by RFEM with 10000 direct Monte Carlo simulation is
0.0059, which is close to the prediction using Eq. (15).

To investigate efficiency of subset simulations, another two
slopes with different random fields are considered. All three slopes
have the same geometry, and input parameters for slope 3 were
changed so that the probability of failure is small. Because the
proposed method avoids the need to search for the factor of safety
during subset simulations, one example would be enough to show
its efficiency as long as the probability of failure is small. The
parameters are summarized in Table 1. Based on the mean
strength, the FS of slopes 2 and 3 are found to be 1.47. There are
910 random variables in each random field. A typical simulation
for θ = 10 m is shown in Fig. 6.

To compare the efficiency of direct Monte Carlo simulation, subset
simulation with FS evaluation and the subset simulation without FS
evaluation, 50 independent simulation runs are computed for each. In
all subset simulations, the P0 is set to 0.1 and 2000 simulations were
conducted for each level of subset simulations. The standard normal
distribution centred at the current sample is chosen as the proposal
distribution. The number of simulations is shown in Table 2. The aver-
aged p f over 50 runs and the corresponding coefficient of variation of

p f Vp f

� �
are shown in Tables 3 and 4. The probability of failure of

slope 2 is much higher than that of slope 3. This is because the spatial
correlation length is 10 and 5m for slopes 2 and 3, respectively. It is usually
observed that the probability of failure of slope increases when the spatial
correlation length increases. The sharpest increase happens when the
spatial correlation length is approximately equal to the slope height, which
in this case is 10m. It can be seen fromTable 3 that all threemethods give
similar estimates of p f. Thismeans that avoiding the search for FS did not
affect the accuracy. It is noted that the Vp f

of slope 2 estimated by direct

Monte Carlo simulation is significantly smaller than the other two slopes
because a relatively large number of simulations were conducted. Com-
pared to slope 1, ten times more simulations were conducted for slope 2,
so the computational time is also approximately 10 times higher. TheVp f

estimated by direct Monte Carlo simulation in Table 4 is in good agree-
ment with Eq. (5). The Vp f

estimated by subset simulation depends on

the correlation between the conditional p f estimated by each subset
simulation. The upper bound estimate of Vp f

is obtained by assuming

the conditional p f is fully correlated:

Vp f
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i; j¼1

Vp f ; i
Vp f ; j

vuut ð16Þ

The coefficient of variation of p f of the first level subset simula-
tion Vp f ; 1

can be estimated by Eq. (5). The coefficient of variation of

p f of the following levels of subset simulation can be estimated by:

Vp f ; i>¼2≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−pf ;i

� �
pf ;iN

1þ γð Þ

vuut ð17Þ

Table 2 Number of simulations

Slope Direct Monte Carlo Subset simulation with FS evaluation Subset simulation without FS evaluation

1 10,000 6000 6000

2 100,000 6000 6000

3 100,000 10,000 10,000

Table 3 Averaged pf over 50 independent runs

Slope Direct Monte Carlo Subset simulation with FS evaluation Subset simulation without FS evaluation

1 0.0059 0.0056 0.0062

2 0.0056 0.0066 0.0058

3 8.8 × 10−5 10.5 × 10−5 9.8 × 10−5
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where γ is related to the correlation among the samples within
each subset simulation and γ ≤ 3 (e.g. (Au and Beck 2001)).The
lower bound estimate of Vp f

is obtained by assuming that the
conditional p f is uncorrelated:

Vp f
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i

Vp f ; i

2

vuut ð18Þ

Assuming γ= 3, the above estimations of the bounds of Vp f
are

shown in Table 4. The Vp f
estimated by 50 independent subset simula-

tion runs is close to the lower bound for slopes one and two, but is close
to the average of the upper and lower bounds for slope 3. For all three
slopes, when the search for FS is avoided, the estimated Vp f

are very

similar to the ones estimated by searching for the FS. This confirms
again that avoiding the search for FS did not affect the accuracy.

The computational time of the three methods are compared in
Table 5. All simulations were conducted in a server with Intel Xeon
CPU X5675@3.07 GHz with 128GB RAM. Several observations can
be made from Table 5.

1. For direct Monte Carlo simulation, the averaged computational
time per simulation decreases as the p f decreases. This is because
there are fewer failures when p f is small, and the simulations that do
not fail require fewer elastoplastic iterations than failed simulations.

2. For subset simulation, the averaged computational time per
simulation increases as the p f decreases. This is because subset
simulation probes the failure region efficiently and thus has
more failures on average.

3. A counter-intuitive observation is that subset simulations with
the search for FS costs more computational time than direct
Monte Carlo simulation for all three slopes considered. The
smaller the p f, the less efficient the subset simulation is. This
means that subset simulations are inefficient in simulating
small p f if the search for FS is needed.

4. The efficiency of subset simulation can be significantly improved by
avoiding the search for FS. This is especially true when p f is small.
For slope 3, the computational time is reduced by around 40 times

using the proposedmethod. The computational time of each level of
subset simulations is compared in Fig. 7. It can be seen from Fig. 7
that most of the computational time (above 80 %) are spent on the
search for FS in the traditional subset simulations.

5. Subset simulation is not necessary more efficient than direct
Monte Carlo simulation even when the search for FS is
avoided. For the examples considered in this paper, the im-
proved subset simulation is less efficient than direct Monte
Carlo simulation when p f is around 0.005 (slopes 1 and 2). For
slope 3, when p f is around 0.0001, subset simulation is about 3
times more efficient than direct Monte Carlo simulation.

The efficiency of the proposed method in the simulation of small
probability of failure of slopes has been demonstrated by three slopes
with same geometry but different parameters. A more generalized
slope model with several soil layers and heterogeneous soil proper-
ties would be interesting, but it would not add anything new to
demonstrate the efficiency of proposed method. The current subset
simulation for slope stability problems requires the search for a
factor of safety, which is very time-consuming. This paper developed
a new method which avoids the search for factor of safety. The
efficiency gained can be demonstrated clearly with the example used
in the paper because the time taken to search for the factor of safety
does not depend on the number of random numbers.

Concluding remarks
In this paper, the RFEM is combined with subset simulation and it is
demonstrated that subset simulation is less efficient than direct Monte
Carlo simulation when the search for FS is needed. It is proposed that
the value of yield function can be used as a measure of safety margin
instead of the FS in subset simulation. Numerical examples show that
the efficiency of subset simulation can be significantly improved by
avoiding the search for FS without losing accuracy.

Although only relatively simple slope stability examples are
used to demonstrate the efficiency of the proposed method, it is
applicable to any slope stability problem with any assumed ran-
dom field models for the soil properties.

Table 4 Coefficient of variation of pf (Vp f
) over 50 independent runs

Slope Direct Monte Carlo Subset simulation with FS evaluation Subset simulation without FS evaluation
Eq. (5) Simulations Lower

bound
Upper
bound

Simulations Lower
bound

Upper
bound

Simulations

1 0.13

0.13 0.15 0.24 0.16 0.15 0.24 0.15

2 0.042 0.037 0.15 0.24 0.17 0.15 0.24 0.17

3 0.34 0.34 0.24 0.49 0.35 0.24 0.49 0.34

Table 5 Comparison of computational time (h)

Slope Direct Monte Carlo Subset simulation with FS evaluation Subset simulation without FS evaluation

1 0.77 75.82 4.74

2 8.36 77.70 3.50

3 7.62 116.74 2.73
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cu undrained cohesion, cf reduced undrained cohesion, cu,FS= 1

undrained cohesion when FS= 1.0, d dimension of X, D foundation
depth ratio,De elastic stress–strain tensor, g plastic potential function, f
yield function, fX joint probability density function, FS factor of safety,
FY cumulative value of yield function of all Gaussian points, H slope
height, IF indicator function of failure, k number of simulations of each
level of subset simulation, m level of subset simulation, n number of
random variables, nf number of failures, N number of simulations of
each level of subset simulation, Nsim number of simulations of direct
Monte-Carlo simulation, p the Standard Normal Distribution, P0 fixed
intermediate conditional probability of failure, p f probability of failure,
q flow direction, q(⋅|xk,i− 1) proposal distribution, which should be
symmetric and centred at current sample, SRF strength reduction
factor, X random variables, x realization of random variables, xk,c
proposed kth component of x, xk,i− 1 current kth component of x, xk,i
new kth component of x, y limit state function, α acceptance criterion,
γsat saturated soil unit weight, γ a parameter that is related to the
correlation among the samples within each subset simulation, θ spatial
correlation length, μcu mean undrained cohesion, Vcu coefficient of
variation of undrained cohesion, Vp f

coefficient of variation of prob-

ability of failure, ε strain, ε: strain rate, εe elastic component of strain
rate, εp plastic component of strain rate, λ: consistency parameter, σ:

stress rate, σmax maximum principal stress, σmin minimum principal
stress, σlncu equivalent normal standard deviation of undrained cohe-
sion, ϕu undrained friction angle, ϕf reduced friction angle
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Fig. 7 Comparison of computational time of subset simulations
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