
TECHNICAL NOTE

Probabilistic stability analyses of undrained slopes with linearly
increasing mean strength

D. ZHU�, D. V. GRIFFITHS†, J. HUANG‡ and G. A. FENTON§

Based on recently published deterministic solutions as a benchmark, the random finite-element method
is used here to investigate the influence of spatial variability on the undrained stability of normally
consolidated random slopes, where the mean strength increases linearly with depth while the coefficient
of variation remains constant. Results are presented in the form of charts that give the mean and
standard deviation of a dimensionless stability number. Using the charts presented in this note,
engineers can obtain a preliminarily assessment of the probability of failure of normally consolidated
clay slopes.
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INTRODUCTION
In the realm of probabilistic geotechnical analysis, slope
stability analysis seems to have received more attention in
the literature than any other geotechnical application.
Important early probabilistic works appeared in the 1970s
(e.g. Matsuo & Kuroda, 1974; Alonso, 1976; Tang et al.,
1976; Vanmarcke, 1977) and papers have continued steadily.
Recognition that geotechnical engineering is highly amen-
able to probabilistic treatment goes back much further.
In his foreword to the inaugural issue of Géotechnique,
Terzaghi (1948) wrote about the properties of the soil
material varying ‘from point to point’. Various probabilistic
methods have been developed for predicting the reliability of
geotechnical structures, such as event trees, first-order
second-moment (FOSM) method and first-order reliability
method (FORM) (e.g. Whitman, 1984; Christian et al., 1994;
Lacasse, 1994; Wolff, 1996; Hassan & Wolff, 1999; Duncan
2000).
It is only relatively recently, however, that Terzaghi’s (1948)

observation of spatial variability of soil properties has been
tackled explicitly by an advanced numerical method called
the random finite-element method (RFEM), with initial
application to seepage problems (Fenton & Griffiths, 1993;
Griffiths & Fenton, 1993), and later to slope stability analysis
(e.g. Griffiths & Fenton, 2000, 2004; Griffiths et al., 2009). In
these studies, slope stability was investigated systematically
using elastic–plastic finite-element methodologies combined
with random field theory in a Monte-Carlo framework.

The random fields were generated by the local averaging
subdivision (LAS) method (Fenton & Vanmarcke, 1990),
which fully accounts for spatial variability and local
averaging over each finite element. All the RFEM analyses
mentioned previously considered slopes with stationary
random properties; that is, the mean and standard deviation
of strength were spatially constant. Owing to the influence of
the effective overburden pressure, however, normally con-
solidated clays regularly display an increasing undrained
strength trend with depth. This problem has received
considerable attention in the past deterministically (e.g.
Gibson & Morgenstern, 1962; Hunter & Schuster, 1968;
Koppula, 1984; Yu et al., 1998; USACE, 2003; Griffiths &
Yu, 2015). In the framework of probabilistic analysis, Hicks
& Samy (2002) considered some non-stationary random
slopes using RFEM for the special case of zero strength at the
ground surface (e.g. Gibson & Morgenstern, 1962), while
Griffiths et al. (2015) introduced briefly the broader class of
slopes in which the mean strength increases linearly with
depth from a non-zero value at the ground surface (e.g.
Hunter & Schuster, 1968). This note will extend the work of
Griffiths et al. (2015) and present a comprehensive set of
results, together with a detailed description of the algorithm
for achieving the non-stationary random field.
The problem definition is shown in Fig. 1, where the slope

angle is β, the slope height is H and the depth ratio to a firm
stratum is D. The mean undrained strength is a linear
function of depth given by the equation

μcuz ¼ μcu0 þ ρz ð1Þ
where μcuz is the mean strength at depth z and μcu0 is the mean
strength at the crest level. ρ is the gradient of mean strength
increase with z, with typical values varying from slightly
greater than 0 to 3·5 kN/m3 (e.g. Koppula, 1984). In this
study the standard deviation of strength is also assumed to be
proportional to depth with a gradient that results in a
constant coefficient of variation vcu (e.g. Lumb, 1966). For
random field modelling, the spatial correlation length is
given by θ, and for the purpose of parametric studies, a
dimensionless spatial correlation length Θ is used where
Θ¼ θ/H. Deterministic parameters include the undrained
friction angle, ϕu¼ 0, and the saturated unit weight, γ.
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NON-STATIONARY RANDOM FIELD GENERATION
Some investigators have looked into non-stationary

random field of soil properties; for example, Li et al. (2014)
investigated the reliability of infinite slopes with linearly
increasing mean strength; Li et al. (2015) investigated the
reliability of a strip footing in the presence of spatially
variable undrained shear strength that linearly increases
with depth; and Müller et al. (2016) focused on the reliable
assessment of a staged embankment construction.
Non-stationary random fields are used throughout the
present study of two-dimensional (2D) slope stability, using
the following algorithm based on initial generation and
subsequent adjustment of a stationary random field.

With reference to Fig. 1, a random field with the properties
given by equation (1) can be generated using the following
steps.

Step 1: initially generate a homogeneous stationary
lognormal random field across the mesh based on the
parameters at z¼ 0, namely, the mean, μcu0 , standard
deviation, σcu0 and spatial correlation length, θ. Let the
initial values assigned to all elements at this stage be c0i,
i¼ 1, 2,…, n where n is the number of elements in the mesh.

Step 2: the element values are then adjusted to account for
depths z. 0 using the scaling factor

czi ¼ c0i
μcu0 þ ρz

μcu0
; i ¼ 1; 2; . . . ; n ð2Þ

where z is sampled at the centroid of each element. For
details of the derivation of equation (2), see the Appendix.

Figure 2 shows a typical realisation of a random field
with the properties indicated in the figure caption. Dark and
light regions depict high and low values of soil strength,
respectively. It can be seen from Fig. 2 that the grey-scale
is becoming darker as the soil strengthens with increased
depth, z.

It should be noted that, if ρ¼ 0, no adjustment in step 2 is
necessary, and the stationary random field generated in step 1
is retained. The case of stationary random fields in slope
stability analysis was reported in detail by Griffiths & Fenton
(2004), who also presented an analytical solution corre-
sponding to the case of an infinite spatial correlation length.
The analytical solution was shown to lead to unconservative

results in some cases (i.e. underestimates of probability
of failure pf values). The reader is also referred to this
paper for further discussion on the influence of spatial
correlation length on probabilistic outcomes in slope stability
analysis.

RESULTS OF RFEM ANALYSES
Recent solutions of the deterministic slope stability

problem shown in Fig. 1 (Griffiths & Yu, 2015) have
refined the charts of Hunter & Schuster (1968). The
fundamental solution is a stability number N expressed as

N ¼ f β;D;Mð Þ ð3Þ
where M is a dimensionless strength gradient parameter
defined as

M ¼ μcu0
ρH

¼ H0

H
ð4Þ

The factor of safety, FS, is proportional to the stability
number, N, given by

FS ¼ N
ρ

γ
ð5Þ

or

N ¼ FS
γ

ρ
ð6Þ

In the context of a Monte-Carlo analysis, each realisation
of an RFEM analysis of the problem shown in Fig. 1 involves
generation of a non-stationary random field as described
in the previous section, followed by a conventional determi-
nistic slope stability analysis using strength reduction to
compute the factor of safety, FS. Finally the stability number
N is retrieved from equation (6). The process is then repeated;
a new non-stationary random field is generated, leading to a
different stability number N and so on. Following a suite of
Monte-Carlo simulations, the mean and standard deviation
of the stability number (μN and σN) for different parametric
combinations can be determined, and have been plotted in
Figs 3–6. In the current study, 1000Monte-Carlo simulations
were considered enough to give reasonably stable and
reproducible statistical output. Fig. 7 shows μN and σN as a
function of the number of simulations for a typical slope
example, indicating that stable results occur as the number of
simulations reaches nsim¼ 1000.
In each of the charts presented in Figs 3–6, the abscissa is

the depth ratio D, the ordinate to the left is μN and the
ordinate to the right is σN. Consider, for example, a slope with
M¼ 0·5, β¼ 15° andΘ¼ 0·5, as shown in Fig. 8. As might be
expected, for slopes with low values of the coefficient of
variation, the mean stability numbers agree well with the
results from deterministic analysis. For higher values of the
coefficient of variation, the mean stability numbers decrease,
implying a decreasing value of the mean factor of safety. An
interesting observation from Fig. 8 is that the mean stability
number for higher values of vcu continues to fall with
increasing depth ratio (in the range 1·5,D, 2·0) where
the deterministic results would remain constant. This
phenomenon emphasises the ‘seeking out’ effect of the
critical failure mechanism in a finite-element slope stability
analysis. Fig. 9 shows three failure mechanisms from a suite
of Monte-Carlo simulations for the same case with vcu ¼ 0�5
and D¼ 2·0. In the deterministic case with M¼ 0·5 and
β¼ 15°, the mechanism can never go deeper than D¼ 1·5
(see Fig. 5(b) in Griffiths & Yu (2015)); however, in some of
the probabilistic simulations, the failure mechanism does go
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Fig. 1. Random slope with linearly increasing mean strength

Fig. 2. A typical realisation of a random field for a slope with β=20°,
M=1·0, D=2·0, vcu= 0�1 and Θ=1·0
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Fig. 3. Mean and standard deviation of stability number (μN and σN) against depth ratio (D) forM=0·5: (a) β = 15° andΘ = 0·5; (b) β = 15° and
Θ = 1·0; (c) β = 15° andΘ = 2·0; (d) β = 20° andΘ = 0·5; (e) β = 20° andΘ = 1·0; (f) β = 20° andΘ = 2·0; (g) β= 30° andΘ = 0·5; (h) β= 30° and
Θ = 1·0; (i) β = 30° and Θ = 2·0; ( j) β = 40° and Θ = 0·5; (k) β = 40° and Θ = 1·0; (l) β = 40° and Θ = 2·0 (continued on next page)
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Fig. 3. Continued
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Fig. 4. Mean and standard deviation of stability number (μN and σN) against depth ratio (D) forM=1·0: (a) β = 15° andΘ = 0·5; (b) β = 15° and
Θ = 1·0; (c) β = 15° andΘ = 2·0; (d) β = 20° andΘ = 0·5; (e) β = 20° andΘ = 1·0; (f) β = 20° andΘ = 2·0; (g) β= 30° andΘ = 0·5; (h) β= 30° and
Θ = 1·0; (i) β = 30° and Θ = 2·0; ( j) β = 40° and Θ = 0·5; (k) β = 40° and Θ = 1·0; (l) β = 40° and Θ = 2·0 (continued on next page)
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Fig. 4. Continued
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Fig. 5. Mean and standard deviation of stability number (μN and σN) against depth ratio (D) forM=1·5: (a) β = 15° andΘ = 0·5; (b) β = 15° and
Θ = 1·0; (c) β = 15° andΘ = 2·0; (d) β = 20° andΘ = 0·5; (e) β = 20° andΘ = 1·0; (f) β = 20° andΘ = 2·0; (g) β= 30° andΘ = 0·5; (h) β= 30° and
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Fig. 6. Mean and standard deviation of stability number (μN and σN) against depth ratio (D) forM=2·0: (a) β = 15° andΘ = 0·5; (b) β = 15° and
Θ = 1·0; (c) β = 15° andΘ = 2·0; (d) β = 20° andΘ = 0·5; (e) β = 20° andΘ = 1·0; (f) β = 20° andΘ = 2·0; (g) β= 30° andΘ = 0·5; (h) β= 30° and
Θ = 1·0; (i) β = 30° and Θ = 2·0; ( j) β = 40° and Θ = 0·5; (k) β = 40° and Θ = 1·0; (l) β = 40° and Θ = 2·0 (continued on next page)
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deeper, as shown in Figs 9(b) and 9(c). This can happen
probabilistically, however, because some random field simu-
lations generate sufficiently low strengths in this deeper range
to attract the critical mechanism. Recent studies by Ching
et al. (2014, 2016) have also emphasised the importance of
the ‘seeking out’ effect in RFEM.
As expected, Figs 3–6 also show the standard deviation of

the stability number σN increasing as the input coefficient of
variation is increased.

Example 1: Distribution of N and pf for a higher value of vcu
As each non-stationary random field simulation

computes a different stability number, N, the sample
probability density function (pdf) of N values can be
plotted for analysis. Fig. 10 shows a histogram of N values
for an example slope problem with geometry and properties
shown in Table 1, together with a lognormal fit. As shown in
Fig. 10, the fitted curve agrees well with random field results.
The histogram is obviously positive-skewed, and a
goodness-of-fit test indicates that a p-value is about 0·45.
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Fig. 7. Check on the number of Monte-Carlo simulations needed for
stable results: (a) variation of µN with nsim; (b) variation of σN
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Fig. 9. Failure mechanisms for the case slope with D=2·0 and
vcu= 0�5: (a) shallow failure mechanism; (b) and (c) deep failure
mechanism
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Fig. 10. Histogram and lognormal fit for example 1
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Use of the charts is now demonstrated to estimate the
probability of failure. Fig. 3(c) with vcu ¼ 0�5 (a suggested
upper bound for the coefficient of variation of undrained
strength; e.g. Lee et al. (1983); Phoon &Kulhawy (1999)) and
D¼ 1, gives μN� 12·81 and σN� 3·91. Assuming that N is
lognormal, as suggested above, the standard deviation and
mean of the underlying normal distribution of lnN are
given by

σlnN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ v2N
� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 0�312� �q

¼ 0�303 ð7Þ

μlnN ¼ ln μN � 1
2
σ2lnN ¼ ln 12�81ð Þ � 1

2
0�3032

¼ 2�504 ð8Þ
Finally the probability of failure (pf) is given by

pf ¼ p FS , 1½ � ¼ p N
ρ

γ
, 1

� �
¼ p N

3
20

, 1
� �

¼ p N , 6�67½ � ¼ Φ
ln 6�67� μlnN

σlnN

� �

¼Φ
ln 6�67� 2�504

0�303
� �

¼ Φ �2�00ð Þ

¼ 1� Φ 2�00ð Þ ¼ 0�023

ð9Þ

where Φ(.) is the standard normal cumulative distribution
function.

Example 2: Distribution ofN and pf for an intermediate value
of vcu

In this example, an intermediate value of the coefficient of
variation of undrained strength is adopted, with input
parameters as shown in Table 2.

As shown in Fig. 11, a lognormal fit to the stability
number N once more gives a good fit and the p-value for
goodness of fit test is about 0·18. As might be expected,
owing to the lower value of the coefficient of variation of vcu
in this example, the degree of skewness of the histogram is
less pronounced than that in Fig. 10.

The use of the charts is now illustrated for example 2.
Figure 6(c) with vcu ¼ 0�3 and D¼ 1 gives μN� 29·93 and

σN� 5·31. Parameters of the underlying normal distribution
of lnN are given from standard transformations as

σlnN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ 0�182� �q

¼ 0�179 ð10Þ

μlnN ¼ ln 29�93ð Þ � 1
2
0�1792 ¼ 3�383 ð11Þ

The probability of failure is therefore given by

pf ¼ p N
1
20

, 1
� �

¼ p N , 20½ � ¼ Φ
ln 20� 3�383

0�179
� �

¼ 1� Φ 2�16ð Þ ¼ 0�015
ð12Þ

CONCLUDING REMARKS
The note has described RFEM analyses of undrained

slopes with non-zero mean strength at the ground surface and
linearly increasing mean strength with depth. A constant
coefficient of variation was assumed in the current work. An
algorithm to generate the non-stationary random field for
this normally consolidated clay slopes was proposed. Results
have been presented for the mean stability number μN and
standard deviation of stability number σN as a function of
slope angle, β, depth ratio, D, coefficient of variation, vcu ,
dimensionless spatial correlation length, Θ, and strength
gradient parameter, M. Although the values of μN for slopes
with low values of the coefficient of variation were in good
agreement with the recently published deterministic results of
Griffiths & Yu (2015), for higher values of the coefficient of
variation, μN fell below the deterministic lower bound as the
depth ratio D was increased. This can be attributed to the
‘seeking out’ ability of finite-element slope stability analysis,
where deeper failure mechanisms can be attracted to low
strengths at greater depths generated by the random fields.
Finally, use of the charts to estimate the probability of slope
failure was illustrated through two examples. Engineers can

Table 1. Geometry and properties for example 1

β: deg H: m D μcu0 : kPa vcu Θ ρ: kN/m3 γ: kN/m3 M

15 10 1 15 0·5 2·0 3 20 0·5

Table 2. Geometry and properties for example 2

β: deg H: m D μcu0 : kPa vcu Θ ρ: kN/m3 γ: kN/m3 M

15 10 1 20 0·3 2·0 1 20 2·0
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Fig. 11. Histogram and lognormal fit for example 2
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use the charts for preliminary assessment of the reliability of
normally consolidated clay slopes with linearly increasing
mean strength with depth.
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APPENDIX
Given that for any random variableXwith lognormal distribution

σlnX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ v2X
� �q

ð13Þ

μlnX ¼ ln μX � σ2lnX=2 ð14Þ
Since vcu is constant

σln czi ¼ σln c0i ð15Þ
The relationship between czi and c0i is therefore

czi ¼ exp
ln c0i � μln c0i

σln c0i
� σln czi þ μln czi

� �

¼ exp
ln c0i � μln c0i

σln c0i
� σln c0i þ μln czi

� �

¼ exp ln c0i � μln c0i þ μln czi
� �

¼ exp ln c0i � μln c0i þ ln μczi �
1
2
σ2ln czi

� �

¼ exp ln c0i � μln c0i þ ln μczi �
1
2
σ2ln c0i

� �

¼ exp ln c0i � ln μc0i þ ln μczi
� �

¼ c0i
μczi
μc0i

ð16Þ

According to equation (1), μcuz ¼ μcu0 þ ρz. As the mean of initial
values c0i is μcu0, μc0i ¼ μcu0 , thus

czi ¼ c0i
μcu0 þ ρz

μcu0
ð17Þ

NOTATION
c0i initial strength values
czi strength values after adjustment
D depth ratio
FS factor of safety
H slope height
H0 height above crest where μcu0 ¼ 0
i simple counter

M strength gradient parameter
N stability number
n number of elements

nsim number of simulations
p smallest value of α at which hypothesis would be rejected
pf probability of failure
vcu coefficient of variation of strength
vN coefficient of variation of stability number
vX coefficient of variation of X
X generic random variable
z depth below crest
α significance level
β slope angle
γ unit weight
Θ dimensionless spatial correlation length
θ spatial correlation length

μcu0 mean strength at the crest level
μcuz mean strength at depth z
μlnN mean of lnN
μlnX mean of lnX
μN mean of stability number
μX mean value of X
ρ strength gradient

σcu0 standard deviation of strength at the crest level
σlnN standard deviation of lnN
σlnX standard deviation of lnX
σN standard deviation of stability number
σX standard deviation of X

Φ(.) standard normal cumulative distribution function
ϕu total stress friction angle (= 0)
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