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Abstract Natural discontinuities are known to play a key

role in the stability of rock masses. However, it is a non-

trivial task to estimate the shear strength of large discon-

tinuities. Because of the inherent complexity to access to

the full surface of the large in situ discontinuities,

researchers or engineers tend to work on small-scale

specimens. As a consequence, the results are often plagued

by the well-known scale effect. A new approach is here

proposed to predict shear strength of discontinuities. This

approach has the potential to avoid the scale effect. The

rationale of the approach is as follows: a major parameter

that governs the shear strength of a discontinuity within a

rock mass is roughness, which can be accounted for by

surveying the discontinuity surface. However, this is typi-

cally not possible for discontinuities contained within the

rock mass where only traces are visible. For natural sur-

faces, it can be assumed that traces are, to some extent,

representative of the surface. It is here proposed to use the

available 2D information (from a visible trace, referred to

as a seed trace) and a random field model to create a large

number of synthetic surfaces (3D data sets). The shear

strength of each synthetic surface can then be estimated

using a semi-analytical model. By using a large number of

synthetic surfaces and a Monte Carlo strategy, a mean-

ingful shear strength distribution can be obtained. This

paper presents the validation of the semi-analytical mech-

anistic model required to support the new approach for

prediction of discontinuity shear strength. The model can

predict both peak and residual shear strength. The second

part of the paper lays the foundation of a random field

model to support the creation of synthetic surfaces having

statistical properties in line with those of the data of the

seed trace. The paper concludes that it is possible to obtain

a reasonable estimate of peak and residual shear strength of

the discontinuities tested from the information from a

single trace, without having access to the whole surface.
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List of symbols

x, y, z Coordinates of points on the discontinuity

surface

Dx Spatial increment in direction x

c Material cohesion (obtained from triaxial

tests)

/ Material friction angle (obtained from triaxial

tests)

/b Basic friction angle

mi Hoek–Brown strength parameter

rci Hoek–Brown strength parameter

r1 Major principal stress

r3 Minor principal stress
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bapp_i Apparent dip of facet i

�ni Unit vector normal to facet i

�s Unit vector indicating the shear direction

b* Variable used to identify active facets

Ncf Total number of contributing facets at a given

value of b*
Ai Facet area

Aip Facet area projected on the xy plane

Atot Total discontinuity area

rlocal_i Local vertical normal stress acting on facet i

fsliding_i Local horizontal force required to slide on

facet i

fshear_i Local horizontal force required to shear facet

i

Fmacro Vertical force exerted on the whole

discontinuity

flocal_i Local vertical force exerted on facet i

fpeak Peak shear force predicted by the model

fresidual Residual shear force predicted by the model

s Shear stress

sp Peak shear strength

sres Residual shear strength

sp-predicted Peak shear strength predicted by the model

sp-exp Experimentally measured peak shear strength

sres-predicted Residual shear strength predicted by the

model

sres-exp Experimentally measured residual shear

strength

\sp[ Mean peak shear strength

\sres[ Mean residual shear strength

q Correlation coefficient

h Correlation length

d Distance between two discrete data

ri Standard deviation of gradients

rz Standard deviation of heights

rz
2 Variance of heights

ix Gradient in direction x

iy Gradient in direction y

JRC Joint roughness coefficient

DZ Difference in surface heights between

successive measurements

zmodel Surface height predicted by the model

zexp Experimental value of surface height

dn Normal displacement

ds Tangential displacement

rno Initial normal stress applied to the specimen

during shear test at constant normal force

rn Normal stress applied to the specimen during

shear test at constant normal stress or normal

stress applied to the specimen at peak shear

strength (for tests under constant normal

force)

1 Introduction

It has been long recognised that the hydro-mechanical

behaviour of a rock mass is strongly influenced by the

presence of discontinuities (Goodman 1989; Brady and

Brown 1985). Figure 1 is a clear illustration of the prob-

lem. The photograph represents a fractured rock mass

along the coastal fringe in the vicinity of Newcastle,

Australia, where fallen blocks are clearly visible. These

blocks have detached along horizontal and sub-vertical

discontinuities, which constitute weaknesses within the

rock mass. Assessing the stability of such blocks, and to

some extent, that of the rock mass, necessitates an estimate

of the shear strength of the discontinuities.

The shear strength of rock joints has been the subject of

significant attention for several decades. Researchers have

investigated key factors such as the mechanical response

(Barton 1976; Bandis et al. 1983; Barton et al. 1985; Zhao

1996; Johnston and Kodikara 1994); the scale effect

(Barton and Bandis 1980; Fardin et al. 2001, 2004; Vallier

et al. 2010); the hydro-mechanical couplings (Witherspoon

et al. 1980; Gale 1982; Raven and Gale 1985; Brown 1987;

Esaki et al. 1999; Indraratna and Ranjith 2001; Lee and

Cho 2002; Koyama et al. 2006; Giacomini et al. 2008); the

phenomenon of asperity degradation (Hutson and Dowing

1990; Boulon et al. 1993); and the effects of filling and

boundary conditions (Ladanyi and Archambault 1977;

Indraratna et al. 1998, 2014; de Toledo and de Freitas

1993). Of all the factors controlling the behaviour of rock

discontinuities, roughness is one of the most critical.

Extensive effort has been spent characterising surface

roughness via classical tribology, geostatistical approaches

(Ferrero and Giani 1990; Tse and Cruden 1979; Marache

Fig. 1 Photograph of a fractured rock mass in Newcastle, NSW,

Australia(photograph by O. Buzzi)
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et al. 2002), fractal theory (Seidel and Haberfield 1995;

Carr and Warriner 1989) and empirical methods (Barton

and Choubey 1977). To date, there is no consensus on the

most appropriate way to characterise joint roughness,

although the joint roughness coefficient (JRC) defined by

Barton and Choubey (1977) appears to be the most used

roughness descriptor.

In parallel to experimental investigations, significant pro-

gress has been made on the modelling front. From the

pioneeringworks of Patton (1966) andBarton (1976), a number

of constitutive laws or mechanistic models have been proposed

to predict the behaviour of rock joints (e.g. Plesha 1987;

Haberfield and Johnston 1994; Seidel and Haberfield 2002;

Vallier et al. 2010; Zandarin et al. 2013). Recently, a number of

newer sophisticated empirical models have been proposed in

the literature (e.g. Grasselli and Egger 2003; Yang et al. 2016).

The substantial progress in computational power that

has occurred in the past decades has seen a number of

models of rock joints being implemented in finite elements

(Selvadurai and Yu 2005; Gens et al. 1990), discrete ele-

ments (Cundall 2000; Bahaaddini et al. 2013; Lambert

et al. 2010) or hybrid finite–discrete elements (Karami and

Stead 2008; Grasselli et al. 2014). Although current

numerical models do offer a number of advantages, they

also suffer from inherent limitations: capturing asperity

degradation remains a challenge, computational times are

still high and, most importantly, an accurate numerical

simulation is only possible if the surface morphology is

available. This encourages the modelling of relatively

small specimens, as large joint surfaces are typical not

available in situ (unless a block has already fallen, which

defeats the purpose of shear strength prediction).

With numerical models and laboratory tests mainly per-

taining to small rock specimens, shear strength results are not

directly transferable to a large scale, because of the well-

known ‘‘scale effect’’ (Barton and Bandis 1980). To date,

although knowledge on rock joints has advanced signifi-

cantly onmultiple fronts, the scale effect remains a challenge

to understand or predict. Despite many attempts to address

the scale effect, either via fractal approaches (Vallier et al.

2010; Li et al. 2016; Giacomini et al. 2008) or experimental

correlations (Bandis et al. 1981), as far as the authors know,

there is still no consensual or practical method available in

the literature. Working directly at the relevant scale for

engineering purposes is not trivial, and there is currently no

satisfactory method to estimate the shear strength of a large

in situ discontinuity. Researchers and engineers often resort

to the joint roughness coefficient (JRC) defined by Barton

and Choubey (1977) and its associated empirical shear

behaviour model. However, this is largely due to conve-

nience and a lack of a reliable alternative. Barton himself

recognises that there has been some confusion about his

model (Barton 2013). Furthermore, the JRC is known to be

scale dependent (it is defined on a 10 cm length) and its value

depends on the method chosen to ascertain it, i.e. Barton’s

comb, statistical correlation (e.g. via Z2) or tilt test.

The research presented in this paper proposes an alter-

native to the traditional deterministic approach and tackles

the issue of shear strength from a stochastic perspective

and using a random field model, with the possibility to

apply it at a large (field) scale. Stochastic analysis per se is

not new in rock mechanics: it is a strategy that has been

used to create discrete fracture networks (e.g. Lambert

et al. 2012; Xu and Dowd 2014; Noorian-Bidgoli and Jing

2015), to reproduce some types of rough joint surfaces

(Lanaro 2000) and to distribute flaws within a rock matrix

(Krumbholz et al. 2014). However, as far as the authors are

aware, there has been no attempt, to date, to predict shear

strength of discontinuities from a stochastic perspective.

This paper includes two parts. The description and vali-

dation of a new semi-analytical model that can predict peak

and residual shear strength of a discontinuity is first pre-

sented. Unlike most existing models, this mechanistic model

is simple to implement and runs in amatter of seconds, which

implies that a large number of simulations, compatible with

Monte Carlo techniques, are possible in a reasonable time.

Although the model is inspired by the work of Huang et al.

(2002), there are a number of novel and important aspects in

the work presented herein: the model handles real 3D sur-

faces, as opposed to 2D idealised ones (e.g. saw-tooth), the

facets are smaller than the asperities, which has implications

on the way the whole asperity shearing is modelled, and the

model predicts both peak and residual shear strength.

The secondpart of the paper lays the foundation for the new

stochastic approach for rock joints. It presents the application

of a randomfieldmodel to the prediction of shear strength. As

it is of utmost importance to first establish a rigorous frame-

work, the research first pertains to laboratory-scale specimens

under controlled conditions, not large-scale discontinuities.

Working under controlled conditions allows defining the

influence of key parameters of the random field model and

identify which roughness descriptor is the most suited to this

new approach. At this stage, prediction of shear strength of

full-scale discontinuities, with their inherent complexities

such as filling, weathering, persistence, opening and pore

pressure, has not yet been attempted. Yet, it is believed that

this approach can be applied to large in situ discontinuities.

2 Rationale of the New Approach
for Discontinuity Shear Strength Prediction

Roughness is one of the key parameters that govern the

shear strength of a discontinuity and that is usually cap-

tured by accurately surveying a discontinuity surface.

However, such survey is not possible for surfaces
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contained within a rock mass and for which only traces are

visible. For natural surfaces, it can be assumed that traces

are, to some extent, representative of the non-accessible

surface. The idea of the new approach is to use the avail-

able information directly at the discontinuity scale, from

the visible traces (here called seed traces), to support the

creation of a large number of synthetic surfaces (3D) via a

random field model (Vanmarcke 1983; Fenton 1990; Fen-

ton and Griffiths 2008). The random field model relies on

the statistics of the input data set (i.e. seed trace) to produce

a random data field of similar statistical characteristics,

namely the synthetic surfaces that are possible represen-

tations of the real discontinuity surface.

In a next step, a distribution of strength is obtained by

predicting the shear strength of all these synthetic surfaces.

Note that the prediction could be achieved via any shear

strength model but, because a large number of surfaces

should be tested to reach a statistically sound result, it is

important to use a time-efficient model. Here, a semi-ana-

lytical model has been developed to support the validation of

the new stochastic approach for shear strength prediction.

Figure 2 summarises the key points of the new approach.

3 Description of the Semi-Analytical Model
for Shear Strength

This section details the key aspects of the model. Expla-

nations are supported by a flow chart (Fig. 3) and

schematics (Figs. 4, 5, 6).

3.1 General Principle

The key idea of the model is to add the contribution of all

asperities that are mobilised during shearing (referred to as

‘‘active’’ or ‘‘contributing’’ asperities). The concept of

active asperities derives from the fact that when a joint

dilates during shearing, dilation occurs along the steepest

asperities, leading to a slight opening of the interface and a

redistribution of the load. These active asperities are then

sheared off, and the load is redistributed onto other

asperities that will then be sheared off. This process is

repeated until no more shearing occurs. The rest of the

section will show that such progressive shearing process is

captured by the model and is reflected in a progressive

modification of the surface geometry.

3.2 Model Inputs

The surface data, organised in a gridded xyz matrix (i.e.

with a constant and equal step long x and y directions),

constitute one of the inputs of the model. The joint is

assumed to be perfectly matching. Shearing occurs along

the xy plane, and z represents the distance from the xy

plane. Note that, by convention, the lowest point of the

surface is allocated a value of z = 0 mm. Other model

inputs are the shearing direction (within the xy plane), the

value of normal stress and the material strength parameters

(c and / for Mohr–Coulomb or mi and rci for Hoek–

Brown). Note that the model relies on a Mohr–Coulomb

criterion to predict local shearing of asperities. If Hoek–

Fig. 2 Key steps of the new

stochastic approach to

predicting shear strength of

natural discontinuities
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Brown parameters are entered, equivalent friction angle

and cohesion will be defined as:

sin/ ¼ K � 1

K þ 1
ð1Þ

and

c ¼ rci � 1� sin/ð Þ
2 � cos/ ð2Þ

where K = dr1/dr3 with r1 the major principal stress and

r3 the minor principal stress.

All the inputs are reported at the beginning of the flow

chart (Fig. 3).

3.3 Identifying the Active Facets

The first step of the model (step 1 in Fig. 3) consists of

triangulating the surface to create facets, as illustrated in

Fig. 4. Note that the surface in Fig. 4 only has a data point

every 1.5 mm (in each direction) so that the facets are

clearly visible. The surfaces used for the model actually

have one data point every 0.5 mm in each direction. The

concept of apparent dip, defined by Grasselli (2006), is

used to indicate how steep the facets are with respect to the

shearing direction and, hence, whether they are active or

not. The apparent dip of facet i (bapp_i) is calculated as:

bapp i ¼ a cos �ni � �sð Þ � 90 ð3Þ

Fig. 3 Flow chart representing the key steps of the analytical model for shear strength

Fig. 4 Example of triangulated surface. Surface dimensions are

approximately 10 cm per 10 cm. The surface contains one data point

every 1.5 mm in both directions
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Fig. 5 a Representation of a

dilating interface with two

active facets remaining in

contact. The vertical force

applied to the discontinuity

Fmacro is balanced by two equal

forces flocal_i, applied at the two

facets in contact. b 2D

representation of the interface

and two active facets being

either sheared at their base or

slided upon. The facet area is

noted Ai, and the area projected

on the xy plane is noted Aip

Fig. 6 a Initial 2D profile of the interface showing six facets (F1–

F6). b Sheared profile showing steps resulting from local shearing.

c Corrected profile with steepening of facets 2 and 5. d Profile after

N iterations and progressive shearing. Facets 1–5 have been

progressively sheared, and their apparent dip has been reduced. As

a result of the step correction, facet 6 has steepened. At this stage,

sliding predomines and iterations stop
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where �ni is the unit vector normal to facet i and �s is the unit

vector indicating the shear direction in the discontinuity

plane (i.e. xy plane). ð�ni � �sÞ is the dot product of both

vectors. In the following, the shearing direction in the xy

plane will be referred to as ‘‘horizontal’’.

Step 3–step 11 of Fig. 3 define the loop where the model

progressively identifies all active facets, from the steepest

and decreasing in steepness, and computes their contribution

to shear resistance. The loop uses the test variable b* which
progressively decreases from the maximum apparent dip of

all facets, towards zero in 0.1 decrements. At each decrement

(i.e. each value of b*), all facets having an apparent dip (b

app_i) larger than or equal to b* are considered active and can
possibly be sheared. The loop on b* stops when no more

shearing occurs (this will be detailed in the next section).

3.4 Computing Shearing and Sliding Forces

The model assumes that all active facets, regardless of their

apparent dip, are in contact. The justification of this

assumption will be given. As a result, the vertical force

exerted on the whole discontinuity (Fmacro) is uniformly

distributed amongst all active facets that are subjected to a

local vertical force flocal_i equal to:

flocal i ¼
Fmacro

Ncf

ð4Þ

where Ncf is the total number of contributing facets at a

given decrement of b* (see Fig. 5a).

The local vertical normal stress is then estimated for

each contributing facet as:

rlocal i ¼
flocal i

Aip

ð5Þ

where Aip is the area of the facet projected on the xy plane

(see Fig. 5b). Note that, although a relative tangential

displacement is shown in Fig. 5a in order to explain why

only the active facets are in contact, the model does not

account for any displacement. As a consequence, it is

considered that contact occurs over whole active facets, not

only partially as depicted in Fig. 5a.

Equation (5) is associated with step 7 in the algorithm of

Fig. 3. As shown in Fig. 5a, there can be several active facets

and hence several points of contact, at any decrement of b*.
Estimating the contribution of each active facet to shear

resistance begins with computing the local horizontal force

required to slide on the facet (fsliding_i, acting on Ai) and the

local horizontal force required to shear the facet along a

horizontal plane (fshear_i acting onAip). Indeed, two scenarios

are here considered: a facet of the top wall can slide on its

bottom counter part, along surfaceAi, or the bottom facet can

be sheared. In this case, it is assumed that shearing occurs

along the base of the facet, along a horizontal plane, as this

minimises the shear resistance (over surface Aip, see

Fig. 5b). fsliding_i, and fshear_i are given by Eqs. (6) and (7):

fsliding i ¼ flocal i � tan /b þ bapp i

� �
ð6Þ

fshear i ¼ Aip � cþ rlocal i � tan /ð Þð Þ ð7Þ

where bapp_i is the facet apparent dip, / is the Mohr–Cou-

lomb friction angle of thematerial, c is the cohesion,/b is the

basic friction angle, Aip is the area of the facet projected on

the xy plane (see Fig. 5b) and rlocal_i is the local vertical

stress (along z axis) acting on facet i [see Eq. (5)].

Local shearing of the facet will only occur if the shear

resistance is lower than the sliding resistance, i.e. fshear_i -

B fsliding_i (see step 9 of the flow chart in Fig. 3).

Shearing tends to prevail over sliding at the beginning of

the iterations, when the facets are steep enough. As pro-

gressive shearing takes place, the asperities flatten (process

to be detailed in the next section) until a point where

sliding prevails over shearing and the iterations stop.

3.5 Progressive Modification of Asperity Geometry

The surface geometry is only modified if shearing of facets

takes place. Although the shear resistance is calculated along

the horizontal plane corresponding to the base of the facet

[Eq. (7)], physical shearing of the facet is imposed along a

plane oriented at b*. It is an assumption of the model, which

allows the progressive shearing of facets and avoids unre-

alistically flat surfaces at the end of the process. Each time a

facet is sheared, a step is created at the junctionwith adjacent

facet (see Fig. 6a, b). Such steps are not commonly observed

after shearing, so the strategy employed here is to correct the

geometry as per Fig. 6c. Adjusting points of the surface can

locally increase the apparent dip of some facets (e.g. facets 2

and 5 in Fig. 6c) that can become active and be sheared. After

a number of iterations, the apparent dip has reduced enough

that sliding becomes predominant over shearing of the facets

(Fig. 6d) and the iterations stop.

3.6 Model Outputs

The model predicts the peak shear strength and the sheared

surface geometry, from which it can estimate the residual

shear strength. As stated in Sect. 3.4, the iterations on b*
stop when it takes less force to slide over the active facets

than to shear them (step 9 in flow chart in Fig. 3). At that

stage, the contribution of all active facets is only frictional

and is calculated by Eq. (6). The peak shear force fpeak is

the sum of the contribution of all active facets (step 12):

fpeak ¼
XNcf

i¼1

fsliding i ¼
XNcf

i¼1

flocal i � tan /b þ bapp i

� �
ð8Þ
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where fsliding_i is the local horizontal force required to slide

over active facet i and Ncf is the total number of active

facets for a given value of b*. The peak shear strength sp-
predicted is simply the peak shear force over the total dis-

continuity area (Atot equal to lx per ly, see Fig. 5a):

sp�predicted ¼ fpeak=Atot ð9Þ

‘‘Appendix A’’ provides an example of calculation of

shear strength for the last two decrements pertaining to the

surface shown in Fig. 6a.

The residual shear strength is calculated from the peak

shear force by considering that the difference between peak

and residual forces is the cohesive contribution of all

sheared asperities:

fresidual ¼ fpeak � c � Ncf � Aip ð10Þ

where fpeak is estimated as per Eq. (8), c is the material

cohesion, Ncf is the total number of active facets and Aip is

the facet area projected on the xy plane (see Fig. 5b). The

residual shear strength is then expressed as:

sres�predicted ¼
fresidual

Atot

ð11Þ

As the value of b* is progressively reduced, the sliding
force reduces (it gets easier to slide on facets) and the

shearing force increases (more facets are being sheared)

until both forces converge, as illustrated in Fig. 7.

4 Description of the Random Field Model
for Natural Discontinuities

A random field model is a probabilistic model that permits

the generation of random data set from an initial data set.

Such model does more than simply producing data fol-

lowing a given distribution; it allows some degree of cor-

relation between the data points, usually as a function of

the distance separating the points (Fenton and Griffiths

2008). In other words, the data points modelled are not

independent from one another. The spatial correlation is

achieved via the so-called correlation length. The local

average subdivision (LAS) algorithm developed by Fenton

and Vanmarcke (1990) was here used to generate random

but correlated data.

It is possible to create a random surface by generating

a random field of asperity heights (most intuitive

parameter to describe a surface) or a field of gradients

(parameter controlling the shear strength in the analytical

model). Decision as to which variable is to be modelled

should be made after due consideration of the two fol-

lowing points:

1. It will be shown in a later section that, for the surfaces

tested in this research, the asperity heights distribution

does not follow any known distribution and cannot be

mathematically defined. In contrast, the distribution of

gradients was found to be approximately normal for

most traces. Considering that the distribution of input

data has to be mathematically defined in order to apply

the random field model, it seems more appropriate to

create a random field of gradients rather than a random

field of asperities.

2. Creating a random surface from gradients poses some

issues. Although integrating the gradients of a trace along

direction x yields the relative height of all points of the

trace, an initial height has to be arbitrarily selected. This

process can be repeated for all parallel traces of the

surface, i.e. all traces in direction x, in order to generate

the height field. However, for each trace, a decision has to

bemade on the initial height and there is no guarantee that

the resulting gradient distribution in the perpendicular

direction (y) would be realistic, since all the traces have

been reconstructed independently from one another.

In short, modelling gradients seems more correct but

reconstructing a surface from gradients is difficult. Bearing

in mind that the objective of the random field model is to

create a field having a Gaussian distribution of gradients,

the following solution was adopted here: a random field of

heights was created with the assumption that the data fol-

low a normal distribution (with mean and standard devia-

tion corresponding to those of the data set). As a

Fig. 7 Evolution of the total shearing stress (defined as

ð
PNcf

i¼1 fsliding i=AtotÞ) and total sliding stress (defined as

ð
PNcf

i¼1 fshear i=AtotÞ) as b* reduces from maximum value to final

value (note that one marker is plotted every ten values). Surface

sheared under a normal stress of 0.1 MPa

D. Casagrande et al.

123



consequence, the derivative of the field created (i.e. gra-

dients) does also follow a normal distribution. The points

mentioned above are then reconciled.

The random field model requires the definition of a

correlation coefficient (q), which is a function of the cor-

relation length (h) and the distance between two points (d).

A Gaussian correlation formulation, which is common in

geotechnical engineering (Fenton and Griffiths 2008), has

been used here:

q dð Þ ¼ e�p� d
hð Þ

2

ð12Þ

Equation (12) describes how the degree of correlation

between two points, quantified by q, decreases as the dis-

tance between the points (d) increases. The rate at which

Table 1 Relevant properties of the mortar used to create the replicas

Unconfined compressive strength

(MPa)

Basic friction angle

(�)
Apparent cohesion

(MPa)

Friction angle

(�)
mi (from Hoek–Brown

criterion)

Mean: 39.67

SD: 5.47

Mean: 35.30

SD: 0.19

4.74 58.1 35.2

SD standard deviation

Fig. 8 Representation of the three surfaces (S, M, R) used to validate the semi-analytical model for shear strength and the new stochastic

approach for the prediction of shear strength. a Surface S, b surface M, c surface R
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the correlation coefficient q decreases is governed by the

correlation length h, defined as:

h ¼ Dx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p

ln 1� 1
2

Dx�ri
rz

� �2
� �

vuuut
ð13Þ

where ri is the standard deviation of gradients (gradients

are defined in ‘‘Appendix B’’), rz is the standard deviation

of heights and Dx is spatial increment in direction x. The

reader can refer to ‘‘Appendix B’’ for the full derivation of

h.
Note that a correlation length can be estimated for any

data set, i.e. for the whole surface or for each trace. Finally,

an assumption of roughness isotropy was made, which

implies that the value of correlation length estimated via

Eq. (13) is considered to be isotropic. It is beyond the

scope of the present paper to implement roughness aniso-

tropy in the random field model.

5 Experimental Facilities and Experimental
Programme

5.1 Materials and Discontinuities

Three natural discontinuities, of different roughness,

coming from sedimentary rocks of the Hunter Valley

(NSW, Australia) were selected for this study. Measure-

ments with Barton’s comb returned JRC values of 2–4,

8–10 and 16–18 for the three surfaces. In the following, the

smooth, medium and rough surfaces will be referred to as

S, M and R, respectively. Moulds of each natural surface

were created using Silastic polymer in order to produce

replicas and conduct multiple tests on the same

morphology. The replicas were made of a mortar con-

taining 14% of water, 30% of cement and 56% of the

fraction passing the 0.6-mm sieve of medium-grained silica

sand from Stockton Beach, NSW, Australia. The two walls

of the discontinuities were created by casting some mortar

(referred to as part A) against the original surface and then

casting some mortar against part A in order to obtain a

perfectly matching part B. All shear tests were conducted

after a week of curing in a fog room, time after which

mortar specimens were tested under unconfined compres-

sion and triaxial compression (as per 1978 ISRM recom-

mended method, length-to-diameter ratio of 2.5) and for

basic friction angle (following ISRM recommended

method). Relevant material properties are provided in

Table 1.

5.2 Photogrammetry

Applying and validating the new analytical model requires

capturing the morphology of each surface, pre- and post-

shearing, which was achieved via photogrammetry. The

specimens were placed on a rotating table with a camera

(Canon 7D EOS equipped with a 50-mm lens) located

about 1 m away from the specimen. A total of 80 rotations

were imparted to the specimen, and each time, a pho-

tograph was taken. The Agisoft Photoscan software was

used to process the data and create a gridded data file.

Figure 8 shows the contour map of the surfaces considered

here and the corresponding replicas.

The accuracy of measurement was estimated to 25 lm,

and a repeatability exercise, conducted on surface M,

shows a normally distributed error with a standard devia-

tion of about 0.08 mm and an average around 0 mm

(Fig. 9).

Fig. 9 Differences in height between two successive measurements of surface M by photogrammetry. a Map of the differences, b histogram of

differences
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5.3 Statistical Analysis of Surfaces

A statistical analysis of the three surfaces was conducted in

order to identify the adequate descriptors of surface mor-

phology that will underpin the rigorous transfer of 2D data

set (seed trace) towards a 3D random field (synthetic sur-

face) via the random field model. The most intuitive

parameter to describe the surface morphology is the height

(noted z, in mm) of every point of the surface. However,

Fig. 10 shows that the histogram of height values does not

follow any specific distribution, making it difficult to

mathematically define the initial data set and, hence, the

target statistical properties of the synthetic surfaces.

In contrast, visual inspection of the histograms gradients

along the x axis (axis defined in Fig. 8) suggests that the

distribution of gradients (defined by Eqs. (14) and (15) of

‘‘Appendix B’’) is close to Gaussian (Fig. 11). For the sake

of conciseness, results pertaining to gradients along y axis

are not shown but their distribution was also found to be

Gaussian.

It is here relevant to consider that each trace has its own

mean and standard deviation of gradients and heights.

These parameters differ from trace to trace, as demon-

strated by Fig. 12.

The variability of sample mean and sample standard

deviation of gradient values from trace to trace (as depicted in

Fig. 12) will translate into a variability in sample correlation

length, calculated according to Eq. (13), as shown in Fig. 13.

Figure 13 raises the question of the influence of the

properties of the seed trace on the estimate of shear

Fig. 10 Histograms of heights of the points constituting surfaces S (a), M (b) and R (c). The continuous line corresponds to a Gaussian

distribution calculated from the mean and standard deviation of the data set
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strength. Since any trace of the surface could be the seed

trace, it is important to assess to what extent the outcome of

the prediction depends on the selection of the seed trace.

This will be covered in a later section.

5.4 Direct Shear Machines and Experimental

Programme

The shear tests were conducted under normal stress values

ranging from0.1 to 6 MPa. Such awide range required the use

of two different apparatuses for a matter of load capacity and

load control accuracy. A ShearTrac II direct shear machine

from Geocomp was used for normal stresses below 1 MPa,

while application of higher stresses was only possible with a

Pro Lab shear machine (see Fig. 14a). The specimens were

encased in metal boxes using high strength plaster (e.g. in

Fig. 14b), as per revised ISRM suggested method (Muralha

et al. 2013).

None of the devices could prevent rotation of the upper

part of the specimen; however, tracking vertical displace-

ments via three sensors placed on the loading plate showed

that rotation of the upper wall remained below 2 degrees

for all surfaces, which was considered acceptable.

Replicas of the three surfaces were tested under six

values of normal stress and four shearing directions in

order to assess anisotropy of the shear strength. The two

shear machines offer different load control: the tests under

low normal stress were conducted under constant normal

force, while those under high normal stress were conducted

under constant normal stress. This difference does not pose

any issue for the validation of the model as long as the

normal stress corresponding to the peak shear strength is

clearly identified and used in the model.

As indicated in Eqs. (10) and (11), the residual shear

strength can be predicted from the peak shear strength and

the total sheared area at peak. It is therefore important to

Fig. 11 Histograms of asperity gradients in the x direction for surface S (a), M (b) and R (c)
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assess the capability of the model to properly capture

surface degradation upon shearing. To do so, some tests

have been conducted twice: once until the residual state (to

obtain the residual strength) and once until the peak, for

comparison with the model. Table 2 provides a summary

of all tests performed.

6 Experimental Results and Validation
of the Model

6.1 Experimental Results

This section first presents some of the experimental results

before elaborating on the predictive capability of the new

analytical model. Figure 15 presents the evolution of shear

stress with tangential displacement for all three surfaces in

the reference shearing direction (0�). Looking at the surface
represented in Fig. 8 as the bottom wall of the discontinuity,

the reference shearing direction, i.e. 0�, corresponds to the

top part of the discontinuity moving downwards (towards

decreasing numbers of the vertical—y axis).

The results are consistent with other results reported in

the literature with an initial linear response, a peak reached

after less than 5 mm of tangential displacement and a

residual regime reached after 10–20 mm.

Figure 15d provides data regarding dilation upon

shearing for surface M. For the sake of conciseness, not all

the data are presented but all results are consistent with

typical response of rock joints upon shearing: the higher

the normal stress, the less dilation.

Figure 16 shows the same experimental results plotted

in terms of shear stress-over-normal stress ratio. Again, the

results are consistent with typical behaviour reported in the

literature (Grasselli 2006). In particular, for each surface,

the gap between the different curves narrows down as

shearing progresses.

Fig. 12 Sample mean value (a) and standard deviation (b) of gradients along all traces in the x direction. The dashed lines represent the average

of the sample means in (a) and of the sample standard deviations in (b), calculated in the x direction. Data pertain to surface R

Fig. 13 Sample correlation length (h) of each trace along directions

x and y for surface R. The dashed lines represent the average

correlation length of the sample over the whole surface along

directions x and y
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6.2 Validation of the Model

This section focuses on the capability of the model to

predict peak shear strength, surface degradation upon

shearing and residual shear strength.

Figure 17 shows the comparison of predicted peak shear

strength and measured shear strength for all three surfaces

(S, M and R). Each sub-figure includes the results obtained

for four shearing directions (identifiable by the symbols)

and six normal stresses (identifiable by the magnitude of

shear strength). The results show that the model can ade-

quately predict the peak shear strength of the discontinu-

ities tested, although the predictions seem to be more

accurate at high values of normal stress. Figure 17d pre-

sents the cumulative frequency of relative error defined as

100 9 (sp-predicted - sp-exp)/sp-exp. A positive error reflects

an over-prediction of shear strength and a negative value,

an under-prediction. Figure 17d shows that one prediction

is out by a factor of 2 (error just below 100%) but for 50%

of the predictions, the relative error falls between -10 and

10%, which is acceptable. Figure 18 shows the comparison

of the predicted and measured values of apparent friction

(ratio of peak shear strength over normal stress) and also

shows lines of constant relative error. Plotting the results in

terms of apparent friction shows that the model tends to

under estimate the peak shear strength for surfaces M and

R. Note that large values of peak shear strength over nor-

mal stress are typically associated with the tests under low

values of normal stresses. The exact reason why the model

under-estimates the peak shear strength under low normal

stress is not totally understood at this stage.

As discussed previously, prediction of residual shear

strength relies on estimating the extent of sheared area.

Figure 19 illustrates how increasing the normal stress results

in a larger portion of the joint surface being sheared. The

development of sheared areas is fully consistent with the

location of steep facets of the original surface R, which is

represented in Fig. 19d. Note that the model actually shears

facets based on their apparent dip angle, which explains why

steep facets located at the bottom of a valley are sheared

Table 2 Summary of the

experimental programme
Test type Shearing direction (�) Surface

S

JRC = 2–4

M

JRC = 8–10

R

JRC = 16–18

CNF 0, 90, 180, 270 rno = 0.1 MPa rno = 0.1 MPa rno = 0.1 MPa

CNF rno = 0.3 MPa rno = 0.2 MPa rno = 0.2 MPa

CNF rno = 0.6 MPa rno = 0.4 MPa rno = 0.4 MPa

CNr rn = 1.5 MPa rn = 1.5 MPa rn = 1.5 MPa

CNr rn = 3 MPa rn = 3 MPa rn = 3 MPa

CNr rn = 6 MPa rn = 6 MPa rn = 6 MPa

CNr rn = 1.5 MPa rn = 1.5 MPa rn = 1.5 MPa

CNr rn = 3 MPa rn = 3 MPa rn = 3 MPa

CNr rn = 6 MPa rn = 6 MPa rn = 6 MPa

All tests conducted at shearing direction of 0, 90, 180 and 270 degrees at a rate of 0.5 mm/s

A total of 144 shear tests were conducted

CNF constant normal force, CNr constant normal stress

Tests conducted until residual regime repeated until the peak are indicated in bold

Fig. 14 a View of the Pro Lab

shear machine load capacity of

100 kN. b View of the low part

of a rock joint specimen encased

in one of the steel boxes with

plaster
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(points at 80 mm\ x\ 100 mm, 55 mm\ y\ 65 mm in

Fig. 19d). For a matter of space, not all details of surface

degradation analysis are presented here.

In order to provide a more quantitative measure of the

model ability to capture surface degradation, the differ-

ence between experimental surface and predicted surface

post-shearing was estimated for all surfaces and four

shearing directions. The results pertaining to surface R

(the rougher and hence the more prone to degradation)

are presented in Fig. 20 in terms of cumulative distri-

bution of differences. Note that the surface comparison

is made using experimental tests that were stopped just

after peak stress was reached (tests highlighted in bold in

Table 1).

It can be seen that the majority of difference values fall

within the range -1.5 to 1.5 mm with maximum recorded

values of 3.2 and -4.7 mm. Such values are much larger

than the measurement error (Fig. 9) and hence can be

considered a reliable representation of the difference

between model prediction and experiment, rather than a

measurement inaccuracy.

Figure 20e shows the spatial distribution of the height

difference between model and experiments for one test

(surface R, sheared under 6 MPa of normal stress along

Fig. 15 Evolution of shear stress s with tangential displacement ds
for surfaces S (a), M (b) and R (c) under six different normal stresses.

d Evolution of normal displacement dn with tangential displacement

ds during shearing for surface M under six different normal stresses.

Tests conducted in the shearing reference direction (0�)
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direction 0 degree). The high values of Dz seem to cor-

respond to the edge of the specimen, which could be a

reflection of local breakage occurring during testing,

which results in zmodel[ zexp. There is also a clear zone

where the model under predicts asperity degradation

(zmodel-zexp & -2 mm, in Fig. 20e). As discussed

before, this is due to the fact that the model shears facets

based on their apparent dip angle rather than location in a

valley or a peak, which is what is normally observed in

experiments (Hans and Boulon 2003).

Following the prediction of the peak shear strength and the

extent of surface shearing, it is possible to estimate the residual

shear strength using Eq. (11). Figure 21 shows a comparison

of the predicted and measured residual shear strength for the

three surfaces under six normal stresses and for four shearing

directions.Withmost of the data falling on or very close to the

1:1 line, it can be concluded that the model can adequately

predict the residual shear strength of the surfaces. The maxi-

mum values of relative error are increased by about 15%

compared to the distribution of errors pertaining to the peak

shear strength. This is not surprising since the error on peak

shear strength (Fig. 17d) is now combined to thatmade on the

sheared surface morphology (Fig. 20).

Note that for a matter of space, the values of apparent

friction (ratio of residual shear strength over normal stress)

are not shown here but similar trends than those reported in

Fig. 18 (i.e. an under-estimation of the apparent friction by

the model) were observed for the residual strength.

Fig. 16 Evolution of shear stress over normal stress (s/rn) with tangential displacement ds for surfaces S (a), M (b) and R (c) under six different

normal stresses. Tests conducted in the shearing reference direction (0�)
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6.3 Computational Time

Most FEM or DEM numerical models would require

computational time of several hours to simulate shearing a

3D rough rock surface (see e.g. Lambert et al. 2010). The

model presented in this paper can provide a reasonable

estimate of peak shear strength, a sheared morphology

(post-peak) and a residual strength is few seconds, which

opens the door for stochastic analysis where a very large

number of simulations are required.

In view of applying the model to larger surfaces in future,

the evolution of computational time with the number of facets

constituting the surface was assessed. To that end, the original

surfaces (made of about 65,000 facets) were halved (about

3000 facets) and doubled (about 120,000 facets). Simulations

were run under several values of normal stresses. As expected,

the more the facets, the higher the computational time (see

Fig. 22a).With the current implementation of themodel (in C

sharp, running on a computer having the following charac-

teristics: Intel(R) Core(TM) i7-4800MQ CPU @ 2.70 GHz,

8 GB of RAM), it can take up to 30 s for a surface made of

120,000 facets (Fig. 22b). The wide range of computational

time for a given number of facets is related to the different

values of normal stresses that result in different sheared

geometry (see Fig. 19). In particular, focusing on the largest

surface (120,000 facets), a clear correlation appears between

Fig. 17 Comparison of predicted peak shear strength (sp-predicted) and
measured peak shear strength (sp-exp) for surface S (a), M (b) and R (c).
The continuous line has a 1:1 gradient. d Cumulative distribution of

relative error for all three surfaces, four directions and six normal stresses.

The relative error is calculated as 100 9 (sp-predicted - sp-exp)/sp-exp
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computational time and number of facets that have been

sheared (Fig. 22b).

7 Validation of the Stochastic Approach
for the Prediction of Discontinuity Shear
Strength

7.1 Example of Synthetic Surface and Distribution

of Shear Strength

An example of a random surface using statistics from

surface R is displayed in Fig. 23. The two surfaces are

clearly different, yet all surfaces created by the random

field model have statistical properties corresponding to

those of the original surface. Figure 24 shows the distri-

bution of heights and gradients of 25 simulations, which

fall very close to Gaussian, as assumed.

Figure 25 shows the experimental results, the deter-

ministic predictions (i.e. semi-analytical shear model

applied to the original surfaces) and the predictions

resulting from the stochastic approach (i.e. shear model

applied to 100 synthetic surfaces, referred to as stochastic

predictions). Note that only the results pertaining to surface

R are presented, for the sake of conciseness. The surfaces

simulated by the random field model are different enough

to observe a wide range of responses. The difference

between the highest and lowest shear strength is in the

Fig. 18 Comparison of predicted peak shear strength over normal

stress (sp-predicted/rn) and measured peak shear strength over normal

stress (sp-exp/rn) for surface S (a), M (b) and R (c). The continuous

line has a 1:1 gradient, and the dashed lines provide values of relative

error, calculated as 100 9 (sp-predicted - sp-exp)/sp-exp
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order of 0.5 MPa under a normal stress of 6 MPa

(Fig. 25a). All stochastic responses fall below their deter-

ministic counterpart, but it will be demonstrated in a later

section that this is a function of the correlation length.

Focusing on the range of shear strength obtained under

6 MPa, Fig. 25b shows a well-graded cumulative distri-

bution of peak and residual shear strength, from which can

be calculated a mean value of shear strength (noted\sp[—

for peak strength or\sres[—for residual strength).

7.2 Influence of the Number of Simulations

At this stage, it is important to ascertain how the distri-

bution of shear strength evolves with the number of sim-

ulations. Figure 26 shows that using less than 100

simulations leads to fluctuations in the shear strength dis-

tributions. In contrast, with more than 100 simulations,

changes in the shear distributions are negligible. Based on

this finding, it was decided to use 100 simulated surfaces,

for each prediction, in order to obtain reliable results in a

reasonable time.

7.3 Influence of Correlation Length and Variance

of Heights

As discussed in Sect. 4, the sample correlation length varies

from trace to trace, posing the question of the representativity

of the initial data set: in otherwords,which trace of the surface

doweactually see in situ (e.g. in a cutting) and is it an adequate

representation of the surface? To answer this question, it is

critical to investigate the sensitivity of the shear strength

distribution to the key variables used to construct the synthetic

surfaces, namely the correlation length h and the variance of

height, rz
2.

Fig. 19 Progressive surface degradation upon shearing predicted by

the model under increasing level of normal stress: a 0.1 MPa,

b 1.5 MPa, c 6 MPa. The black pixels represent the sheared facets.

d Representation of the bottom wall of the original R surface. All

dimensions in mm. Surface R sheared in the reference direction (0�),
i.e. downwards along Y direction
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Fig. 20 Cumulative distribution of difference in height (z) between

the model predictions and the experiments post-peak for surface PR

under six values of normal stress. a At 0�, b at 90�, c at 180�, d at

270�. e Map of differences in height (zmodel - zexp) for surface R

under 6 MPa sheared at 0� (along y axis, from top to bottom)
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Figure 27 shows how the mean peak shear strength

(\sp[) evolves with varying correlation and variance of

heights. Note that each value of mean was calculated

from 100 simulations and six different normal stresses

were imposed on the surfaces. Figure 27a is obtained at

constant height variance (equal to 2.8 mm2) and

Fig. 27b, at constant correlation length (equal to

27.4 mm). A value of 0.02 MPa was arbitrarily chosen

as a lower bound for the normal stress. Figure 27a

clearly demonstrates that a longer correlation length

results in a lower peak shear strength, which is explained

by the fact that increasing the spatial correlation results

in a smoother surface. Also very clear is the fact that the

effect is more pronounced for low normal stresses: at

0.02 MPa, the relative decrease in shear strength is 60%

(from 0.05 to 0.02 MPa), while it is only 3% at 6 MPa,

over the range of correlation length considered.

The variance has been found to have an opposite effect:

a larger variance yields a higher shear strength (Fig. 27b).

Such observation can be interpreted as follows: a broader

distribution of heights (i.e. a higher variance) means a

rougher surface, which will provide a higher shear strength.

Fig. 21 Comparison of predicted residual shear strength (sres-predicted)
and measured residual shear strength (sres-exp) for surface S (a), M
(b) and R (c). The continuous line has a 1:1 gradient. d Cumulative

distribution of relative error for all three surfaces, four directions and

six normal stresses. The relative error for the residual shear strength is

calculated as 100 9 (sres-predicted - sres-exp)/sres-exp
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Again, the effect is more pronounced under low normal

stresses.

Following the findings of Fig. 27, a more detailed

parametric study was conducted under a normal stress of

0.02 MPa, a value for which the sensitivity to correlation

length and variance of height is the most pronounced.

Twenty-five combinations of h and rz
2 were considered,

and for each one of them, 100 synthetic surfaces were

created and the mean peak shear strength was obtained.

The (h, rz
2,\sp[) data were then used to create a contour

map of \sp[ (by kriging) for varying correlation length

and height variance (see Fig. 28a). The black dots repre-

sent the specific (h, rz
2) points tested, while the contour

lines correspond to the values of mean shear strength,

ranging from a minimum of 0.015 MPa to a maximum of

about 0.110 MPa. Overall, the fluctuations in shear

strength are quite modest across the values of correlation

length and variance tested, except for variances larger than

3 mm2 and correlation lengths lower than 18 mm (top left

corner of the figure).

Interestingly, when superimposing the traces of the

original surface R, represented by their actual values of (h,
rz
2) (crosses in Fig. 28b), on the contour map obtained in

Fig. 28a, it appears that only a portion of the contour map

is relevant for the considered surface. Although the para-

metric study (Fig. 28a) showed a possible variation of

mean shear strength between 0.015 and 0.110 MPa, in case

of surface R, the actual values of correlation length and

Fig. 22 a Evolution of computational time as a function of the total number of facets constituting the discontinuity surface. b Evolution of

computational time as a function of total number of sheared facets for the largest surface under different normal stresses

Fig. 23 Original surface R (a) and an example of a simulated surface (b) using the random field model and a correlation length of 27.4 mm and

a variance of heights of 2.8 mm2
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height variance, calculated for all traces, reduce the range

of mean shear strength to 0.024–0.036 MPa (Fig. 28b).

Considering now the mean peak shear strength corre-

sponding to each cross of Fig. 28b and plotting the his-

tograms of these values, it further appears that 53% of the

data fall within the range 0.027–0.031 MPa with a mean

value of 0.0295 MPa and a standard deviation of

0.0026 MPa (Fig. 29). Similar outcomes were obtained for

surfaces S and M, although not presented here for a matter

of conciseness.

Figures 28 and 29 suggest that, at least for the surfaces

tested here, the uncertainty due to the selection of the seed

trace is fairly limited (see Fig. 29).

7.4 Stochastic Modelling of Shear Strength

7.4.1 Predictions from the Statistics of the Whole Surface

In this section, the statistics of whole surfaces (S, M and R)

were used as an input to the random field model (see

Fig. 24 Distribution of gradients (a) and surface height (b) of 25 synthetic surfaces

Fig. 25 a Peak and residual failure envelopes for surface R sheared

along direction x. The dots represent experimental values, the black

lines correspond to the prediction on the initial surface (referred to as

deterministic), and the grey lines forming bands correspond to the

predictions on the virtual surfaces (referred to as stochastic).

b Cumulative relative frequency of peak and residual shear strength

under a normal stress of 6 MPa from which mean shear strength and

standard deviation are calculated
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Table 3). For each surface, 100 synthetic surfaces were

created and virtually sheared.

Figure 30 shows that the mean value of shear strength

(peak and residual) for all three surfaces compares rea-

sonably well with the deterministic prediction obtained, for

each surface, from the analytical model.

This clearly indicates that creating synthetic surface

from the statistics of the whole surface yields satisfactory

shear strength estimates. The next section will focus on

synthetic surfaces created from the statistics of a seed trace,

and the predictions from the stochastic approach will be

compared to the experimental results.

7.4.2 Predictions from the Statistics of a Seed Trace

Here, 100 synthetic surfaces were created from a random

seed trace of the natural surfaces S, M and R. These syn-

thetic surfaces were virtually sheared under six values of

normal stress using the semi-analytical model. For each

value of normal stress, the mean value and standard devi-

ation of both peak and residual shear strength were then

calculated. Figure 31 shows the comparison of the results

of the stochastic modelling to the experimental data

obtained on the replicas of the three natural surfaces.

For the smoothest surface (S—Fig. 31a), four of the six

predictions fall on the 1:1 line and two are slightly

underestimated. The rougher the surface, the more the

approach seems to underestimate the strength: three pre-

dictions are correct for surface M (Fig. 31b) but this falls to

two correct predictions for surface R (Fig. 31c). For the

other cases, the shear strength (peak and residual) is

underestimated by a factor of 2, which means that the

prediction is very conservative.

The under-estimation of shear strength is not caused by

randomly creating surfaces from information available

from a seed trace but is related to the quality of the semi-

Fig. 26 Effect of the number of simulations on the cumulative

distribution of predicted peak shear strength (sp-predicted) for surface R
sheared along direction x under a normal stress of 0.1 MPa (a) and
6 MPa (b). Continuous lines correspond to 10, 30 and 50 simulations,

while dashed lines correspond to 100, 600 and 1000 simulations

Fig. 27 Sensitivity of mean peak shear strength \sp[ to the

correlation length h at constant height variance rz
2 (equal to

2.8 mm2) (a) and to the variance of heights rz
2 at constant correlation

length h (equal to 27.4 mm) (b). Random field statistics are obtained

form surface R. Synthetic surfaces were sheared under six different

values of normal stress along direction x

D. Casagrande et al.

123



analytical model for shear strength. Indeed, Fig. 32 clearly

shows that the prediction of shear strength made on the

original R surface closely matches the mean shear strength

predicted by the stochastic approach.

Figure 31 shows the validation of the new approach

detailed in Sect. 2 and which advocates that there is

enough information contained in a single trace to create

random surfaces and obtain a representative distribution of

shear strength for the discontinuity. Indeed, the simulated

values presented in Fig. 31 are all shear strength values of

surfaces created from the statistics of seed traces only, not

full surfaces.

8 Conclusions

This paper presents a novel approach that could avoid any

up-scaling exercise when estimating the shear strength of

rock discontinuities by directly using the surface informa-

tion available at the scale of the rock mass.

The first part of the paper deals with a new semi-ana-

lytical model that can predict the peak and residual shear

strength of rock joints. This mechanistic model is inspired

from the work of Huang et al. (2002) but has been sig-

nificantly improved: the model handles real 3D surface, as

opposed to 2D idealised ones (e.g. saw-tooth) and can

predict both peak and residual strength. Also, the high

precision in surface measurement implies that the facets are

much smaller than the asperity size, which brings another

level of complexity in the model and requires a strategy for

progressive degradation. The model only requires the 3D

description of the surface and the material strength prop-

erties to run; no calibration is necessary. At this stage, only

a constant normal stress condition can be applied in the

model and tangential displacements are not predicted, but

this is not a problem for the newly proposed approach since

Table 3 Correlation length and variance of heights corresponding to

the data set of the full surfaces S, M and R in the direction of shearing

Surface S Surface M Surface R

Correlation length (mm) 38.7 26.2 27.4

Variance of heights (mm2) 2.7 2.3 2.8

Fig. 28 a Contour plot of mean peak shear strength (\sp[) as a

function of correlation length h and variance of height (rz
2), for 100

synthetic surfaces sheared under a normal stress of 0.02 MPa. The

black dots represent the combinations of h and rz
2 tested. The contours

map was obtained by kriging and using the\sp[values obtained for

each (h, rz
2) combination. Contour lines are plotted at 0.005 MPa

increments. b Plot of traces of surface R, represented by their actual

combination of correlation length and variance of height (crosses) in

the space of the contour map defined in Fig. 26a

Fig. 29 Histogram of mean peak shear strength \sp[ where each

value is calculated from 100 simulated surfaces created from each

combination of (h, rz
2) represented by the crosses in Fig. 28b
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it is solely based on strength. A series of direct shear tests

were conducted on replicas of three natural surfaces, under

four shearing directions and under six levels of normal

stress. The model was found to adequately predict both

peak and residual shear strength under the set of conditions

tested. However, validation was achieved with only three

surfaces and more validation work will be conducted in

future to better ascertain the predictive capability of the

model, especially in the range of low normal stress. Unlike

complex numerical models, this new model runs in a

matter of seconds, which is ideal for the stochastic analyses

that constitute the key point of the newly proposed

approach to predicting shear strength.

The second part of the paper delves into the random

field model required to produce and characterise

distributions of shear strength. A first analysis conducted

with the statistics of whole surfaces showed that a

minimum number of 100 simulations are recommended

to obtain meaningful results. Then, a sensitivity analysis

was conducted to assess the influence of correlation

length and height variance on the distribution of shear

strength. It was found that correlation length and vari-

ance of heights have opposite effects and that these

effects are more relevant under low values of normal

stress. Finally, peak and residual shear strengths of the

three natural surfaces were predicted using the new

approach. It was found that for high stresses and smooth

surfaces, the predicted values of mean shear strength

tend to match the experimental data but as the surface

gets rougher and the normal stress drops, the mean

Fig. 30 Comparison between the mean value of shear strength,

obtained by the stochastic approach, and deterministic predictions

obtained from applying the semi-analytical model to surfaces S (a), M
(b) and R (c). Shearing was done under normal stress values of 0.1,

0.5, 1, 3 and 6 MPa. Full symbols peak shear strength; empty symbols

residual shear strength. The error bar shows the standard deviation

associated with the mean value of shear strength
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values of predicted shear strength tend to fall below the

measured values. However, it was shown that this under-

estimation can be due to the semi-analytical model for

shear strength rather than the fact that synthetic surfaces

were used. The significance of this research is that

predicting the shear strength of a discontinuity could be

achieved from information gathered directly at the dis-

continuity scale without having to resort to small spec-

imens and hence to have to account for the scale effect.

The method has not yet been applied to large in situ

discontinuities, as this requires developments that are

beyond the scope of this paper. Indeed, it is critical to

account for possible opening, filling, weathering and

persistence of discontinuities.
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Appendix A: Example of Calculation of Peak
Shear Strength

This example focuses on the last two decrements (#154

and #155) of calculation of shear strength for the sim-

plified surface shown in Fig. 33. Coordinates of the

points making the geometry are given in Table 4. Note

that the dimensions of the surface (6 m in the

Fig. 31 Comparison of mean peak and residual shear strength

resulting from stochastic modelling and experimental shear strength

obtained for surface S. Full symbols peak shear strength; empty

symbols residual shear strength. Hundred surfaces simulated from

surface S (in a with rz
2 = 3.21 mm2 and h = 40.1 mm), from surface

M (in b with rz
2 = 3.82 mm2 and h = 26.2 mm) and from surface R

(in c with rz
2 = 4.81 mm2 and h = 26.6 mm). Synthetic surfaces

were virtually sheared under six values of normal stress
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X direction by 1 m in the Y direction) and the material

properties (Table 5) have been chosen to simplify the

example and are not necessarily representative of the

surfaces tested in this research. Shearing occurs along

the X axis with the top wall moving from left to right.

As a consequence, the gradient of the facets, as repre-

sented in Fig. 33, coincides with the apparent dip bapp_i.
Also, in order to simplify this example, the facets are not

triangular but rectangular, which does not change the

mechanics of the model. So, there are only six facets in

the surface presented.

On the initial geometry, facets 1 and 4 are the steepest at

41.99�. The model sets the starting value of b* at 41.9� (at
the nearest 0.1� below the steepest facets), making facets 1

and 4 active from decrement #1.

At decrement 154, b* has reduced to 26.6� (153

decrements of 0.1�). Following the progressive facet

modification strategy described in Sect. 3.5, facets 2 and 5

have steepened and have become active. The apparent dip

of all facets is reported in Table 6.

So, at decrement #154, four facets are active (Ncf = 4)

and the total force applied to the discontinuity (1200 kN,

see Table 4) is sheared between the four facets. Conse-

quently, flocal_i is equal to 300 kN and rlocal_i is 0.3 MPa.

Using Eqs. (7) and (6) and the materials properties reported

in Table 5, the forces required to shear each facet at its

Table 4 Coordinates of the points of the initial geometry

Point A B C D E F G

X (m) 0 1 2 3 4 5 6

Y (m) 0 0.9 1.05 1.5 2.4 2.7 2.7

Table 5 Dimensions, material

properties and load
Surface dimensions

lx (m) 6

ly (m) 1

Material parameters

/b (�) 28

/ (�) 35

c (MPa) 0.2

Normal stress

rn (MPa) 0.2

Fmacro (kN) 1200

Fig. 32 Comparison of mean peak and residual shear strength

resulting from stochastic modelling of 100 synthetic surfaces and

shear strength prediction made from the original surface R. Full

symbols peak shear strength; empty symbols residual shear strength.

Hundred surfaces simulated using rz
2 = 0.51 mm2; h = 13.3 mm and

sheared under six different values of normal stress

Fig. 33 Simplified surface

geometry for an estimate of

peak shear strength. The surface

is made of six facets identified

in the initial geometry (a).
b Perspective view of the initial

geometry showing the

rectangular facets. Width of the

surface (in Y direction): 1 m
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base (fshear_i) and to slide over it (fsliding_i) are found to be

410 and 422 kN, respectively. Since fshear_i\ fsliding_i,

shearing takes place. This means that b* is further reduced

to 26.5�, which also becomes the new apparent dip (bapp_i)
of all active facets.

As highlighted in Sect. 3.5, changing the apparent dip of

facets 1, 2, 4 and 5 also affects the dip of facets 3 and 6 (see

values in Table 7). In particular, we now have:

bapp_3 = 26.69� C b* = 26.5�, meaning that facet 3 is

now active and that Ncf = 5. Note that the apparent dip of

facet 3 can be checked from the coordinates of point D in

Fig. 33 (that still prevail at decrement 155), and the

apparent dip of facets 1 and 2 at decrement 155 (26.5�).
The local normal stress drops from 0.3 MPa at decre-

ment 154 to 0.24 MPa at decrement 155. As a result, the

forces required to shear each facet at its base (fshear_i) and

to slide over it (fsliding_i) become 368 and 336 kN,

respectively. At that stage, the force required to slide over

the facets is less than that required to shear them, which

marks the end of the iterations.

The peak shear force is computed as the sum of the

sliding force over all active facets at the last decrement:

fpeak ¼
XNcf

i¼1

fsliding i ¼ 5 � 336 ¼ 1840 kN

The peak shear strength is calculated as:

sp�predicted ¼ fpeak=Atot ¼ 1:840MN/6m2 � 0:31MPa

The residual shear strength is obtained by the following

equation:

sres�predicted ¼
fpeak � c � Ncf � Aip

Atot

where Ncf = 4 (facet #3 became active but was not actually

sheared). So we get:

sres�predicted ¼
1:84� 0:2 � 4 � 1

6 � 1 ¼ 0:17 MPa

Figure 34 shows the final surface geometry after all

steps of progressive shearing.

Appendix B: Derivation of Correlation Length h

Consider points (x, y, z) of a surface and let us define z(x,

y) as the surface height at point (x, y).

The directional gradients are defined as:

ix ¼
z xþ Dx; yð Þ � z x; yð Þ

Dx
ð14Þ

Table 6 Model variables at

decrement 154
bapp_i (�) 26.6 26.6 24.23 26.6 26.6 8.52

b* (�) 26.6

Ai (m
2) 1.12 1.12 1.10 1.12 1.12 1.01

Aip (m
2) 1 1 1 1 1 1

Facet active? Yes Yes No Yes Yes No

Ncf (# of active facets) 4

flocal_i (N) (Eq. 4) 300,000 300,000 0 300,000 300,000 0

rlocal_i (Pa) (Eq. 5) 300,000 300,000 0 300,000 300,000 0

fshear_i (kN) (Eq. 7) 410 410 0 410 410 0

fsliding_i (kN) (Eq. 6) 422 422 0 422 422 0

Outcome Sheared Sheared n/a Sheared Sheared n/a

Table 7 Model variables at

decrement 155
bapp_i (�) 26.5 26.5 26.5 26.5 26.5 11.70

b* (�) 26.5

Ai (m
2) 1.12 1.12 1.12 1.12 1.12 1.02

Aip (m
2) 1 1 1 1 1 1

Facet active? Yes Yes Yes Yes Yes No

Ncf (# of active facets) 5

flocal_i (N) (Eq. 4) 240,000 240,000 240,000 240,000 240,000 0

rlocal_i (Pa) (Eq. 5) 240,000 240,000 240,000 240,000 240,000 0

fshear_i (kN) (Eq. 7) 368 368 368 368 368 0

fsliding_i (kN) (Eq. 6) 336 336 336 336 336 0

Outcome Sliding Sliding Sliding Sliding Sliding n/a
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iy ¼
z x; yþ Dyð Þ � z x; yð Þ

Dy
ð15Þ

For the sake of consistency with the equation presented

in the core of the paper, let us consider one direction (either

x or y) and drop the x or y subscript.

Using the definition of the gradients above, their vari-

ance var i½ � can be expressed as:

var i½ � ¼ r2i ¼
1

Dx

� �2

�var z xþ Dx; yð Þ � z x; yð Þ½ � ð16Þ

where ri is the standard deviation of gradients. Equa-

tion (16) then becomes:

r2i ¼
1

Dx

� �2

�½2 � r2z � cov z xþ Dx; yð Þ; z x; yð Þ½ � ð17Þ

where cov is the covariance and rz is the standard deviation
of heights, which are related by:

cov z xþ Dx; yð Þ; z x; yð Þ½ � ¼ r2z � q Dxð Þ ð18Þ

Combining Eqs. (17) and (18), we get:

r2i ¼ 2
rz
Dx

� �2

� 1� q Dxð Þ½ � ð19Þ

Equation (19) can be reformulated as:

q Dxð Þ ¼ 1� 1

2
� ri � Dx

rz

� �2

ð20Þ

A Gaussian correlation formulation was chosen for the

correlation coefficient, which reads

q dð Þ ¼ e�p� d
hð Þ

2

ð21Þ

Combining Eqs. (20) and (21), in which the condition

d = Dx (where Dx is the spatial increment along the sur-

face) is imposed, yields an estimate the correlation length h

which depends on the standard deviation of the height and

gradients:

h ¼ Dx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p

ln 1� 1
2

Dx�ri
rz

� �2
� �

vuuut
ð22Þ
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Géotechnique 43(1):1–19

Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a

shear-flow test apparatus and determination of coupled proper-

ties for a single rock joint. Int J Rock Mech Min Sci 36:641–650

Fardin N, Stephansson O, Jing L (2001) The scale dependence of rock

joint surface roughness. Int J Rock Mech Min Sci 38(5):659–669

Fardin N, Feng Q, Stephansson O (2004) Application of a new in situ

3D laser scanner to study the scale effect on the rock joint

surface roughness. Int J Rock Mech Min Sci 41:329–335

Fenton GA (1990) Simulation and analysis of random fields, PhD

thesis, Princeton University, p 178

Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical

engineering: technology and engineering, Wiley, p 453

Fenton GA, Vanmarcke E (1990) Simulation of random fields via

local average subdivision. J Eng Mech 116(8):1733–1749

Ferrero AM, Giani G (1990) Geostatistical description of the joint

surface roughness. In: Proceedings of the 31th U.S. symposium

Fig. 34 Modified geometry at decrement 155 (final decrement).

Dashed line shows the initial geometry, for comparison

D. Casagrande et al.

123



on rock mechanics (USRMS), Golden, Colorado, paper ARMA-

90-0463

Gale JE (1982) Assessing the permeability characteristics of fractured

rocks. Geol Soc Am Spec Pap 189:163–182

Gens A, Carol I, Alonso E (1990) A constitutive model for rock joints

formulation and numerical implementation. Comput Geotech

9(1–2):3–20

Giacomini A, Buzzi O, Giani G, Migliazza M, Ferrero A (2008)

Numerical study of flow anisotropy within a single natural joint.

Int J Rock Mech Min Sci 45:47–58

Goodman R (1989) Introduction to rock mechanics. Springer, AA

Dordrecht

Grasselli G (2006) Shear strength of rock joints based on quantified

surface description. Rock Mech Rock Eng 39(4):295–314

Grasselli G, Egger P (2003) Constitutive law for the shear strength of

rock joints based on three-dimensional surface parameters. Int J

Rock Mech Min Sci 40(1):25–40

Grasselli G, Lisjak A, Mahabadi OK, Tatone BS (2014) Influence of

pre-existing discontinuities and bedding planes on hydraulic

fracturing initiation. Eur J Environ Civ Eng 19(5):580–597

Haberfield CM, Johnston IW (1994) A mechanistically-based model

for rough rock joints. Int J Rock Mech Min Sci 31(4):279–292

Hans J, Boulon M (2003) A new device for investigating the hydro-

mechanical properties of rock joints. Int J Numer Anal Meth

Geomech 27(6):513–548

Huang TH, Chang CS, Chao CY (2002) Experimental and mathe-

matical modeling for fracture of rock joint with regular

asperities. Eng Fract Mech 69(17):1977–1996

Hutson RW, Dowing CH (1990) Joint asperity degradation during

cyclic shear. Int J Rock Mech Min Sci 27(2):109–119

Indraratna B, Ranjith P (2001) Hydromechanical aspects and

unsaturated flow in jointed rock. A.A. Balkema Publisher,

Amsterdam

Indraratna B, Haque A, Aziz N (1998) Laboratory modelling of shear

behaviour of soft joints under constant normal stiffness condi-

tion. Geotech Geol Eng 16(1):17–44

Indraratna B, Premadasa W, Brown ET, Gens A, Heitor A (2014)

Shear strength of rock joints influenced by compacted infill. Int J

Rock Mech Min Sci 70:296–307

Johnston IW, Kodikara JK (1994) Shear behaviour of irregular

triangular rock-concrete joints. Int J Rock Mech Min Sci

31(4):313–322

Karami A, Stead D (2008) Asperity degradation and damage in the

direct shear test: a hybrid FEM/DEM approach. Rock Mech

Rock Eng 41(2):229–266

Koyama T, Fardin N, Jing L, Stephansson O (2006) Numerical

simulation of shear-induced flow anisotropy and scale-dependent

aperture and transmissivity evolution of rock fracture replicas.

Int J Rock Mech Min Sci 43(1):89–106

Krumbholz M, Hieronymus C, Burchardt S, Troll V, Tanner D, Friese

N (2014) Weibull-distributed dyke thickness reflects probabilis-

tic character of host-rock strength. Nat Commun. doi:10.1038/

ncomms4272

Ladanyi B, Archambault G (1977) Shear strength and deformability

of filled indented joints. In: Proceedings of international

symposium on the geotechnics of structurally complex forma-

tions. Capri, pp 317–326

Lambert C, Buzzi O, Giacomini A (2010) Influence of calcium

leaching on the mechanical behavior of a rock-mortar interface:

a DEM analysis. Comput Geotech 37(3):258–266

Lambert C, Thoeni K, Giacomini A, Casagrande D, Sloan SW (2012)

Rockfall hazard analysis from discrete fracture network

modelling with finite persistence discontinuities. Rock Mech

Rock Eng 45(5):871–884

Lanaro F (2000) A random field model for surface roughness and

aperture of rock fractures. Int J Rock Mech Min Sci

37(8):1195–1210

Lee HS, Cho TF (2002) Hydraulic characteristic of rough fractures in

linear flow under normal and shear load. Rock Mech Rock Eng

35(4):299–318

Li Y, Oh J, Mitra R, Canbulat I (2016) A fractal model for the shear

behaviour of large-scale opened rock joints. Rock Mech Rock

Eng. doi:10.1007/s00603-016-1088-8

Marache A, Riss J, Gentier S, Chiles JP (2002) Characterization and

reconstruction of a rock fracture surface by geostatistics. Int J

Numer Anal Methods Geomech 26(9):873–896

Muralha J, Grasselli G, Tatone B, Blumel M, Chryssanthakis P,

Yujing J (2013) ISRM suggested method for laboratory deter-

mination of the shear strength of rock joints: revised version. In:

Ulusay R (ed) The ISRM suggested methods for rock charac-

terization, testing and monitoring: 2007–2014, Wiley,

pp 131–142. doi:10.1007/978-3-319-07713-0

Noorian-Bidgoli M, Jing L (2015) Stochastic analysis of strength and

deformability of fractured rocks using multi-fracture system

realizations. Int J Rock Mech Min Sci 78:108–117

Patton FD (1966) Multiple modes of shear failure in rock. In:

Proceeding of first congress of ISRM, Lisbon, Portugal, vol 1,

pp 509–513

Plesha ME (1987) Constitutive models for rock discontinuities with

dilatancy and surface degradation. Int J Numer Anal Meth

Geomech 11(4):345–362

Raven RG, Gale JE (1985) Water flow in a natural rock fracture as a

function of stress and sample size. Int J Rock Mech Min Sci

22(4):251–261

Seidel JP, Haberfield CM (1995) The use of fractal geometry in a joint

shear model. In: Mechanics of jointed and faulted rock:

proceedings of the 2nd international conference on mechanics

of jointed and faulted rock, MJFR-2, Vienna, Austria,

pp 529–534

Seidel JP, Haberfield CM (2002) A theoretical model for rock joints

subjected to constant normal stiffness direct shear. Int J Rock

Mech Min Sci 39(5):539–553

Selvadurai APS, Yu Q (2005) Mechanics of a discontinuity in a

geomaterial. Comput Geotech 32(2):92–106

Tse R, Cruden CM (1979) Estimating joint roughness coefficient. Int J

Rock Mech Min Sci 16(5):303–307

Vallier F, Mitani Y, Boulon M, Esaki T, Pellet F (2010) A shear

model accounting scale effect in rock joints behaviour. Rock

Mech Rock Eng 43:581–595

Vanmarcke E (1983) Random fields: analysis and synthesis. The MIT

press, Cambridge, MA, pp 382

Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of

cubic law for fluid flow in a deformable rock fracture. Water

Resour Res 16(6):1016–1024

Xu C, Dowd PA (2014) Stochastic fracture propagation modelling for

enhanced geothermal systems. Math Geosci 46(6):665–690

Yang J, Rong G, Hou D, Peng J, Zhou C (2016) Experimental study

on peak shear strength criterion for rock joints. Rock Mech Rock

Eng 49(3):821–835

Zandarin MT, Alonso E, Olivella S (2013) A constitutive law for rock

joints considering the effects of suction and roughness on

strength parameters. Int J Rock Mech Min Sci 60:333–344

Zhao J (1996) Joint surface matching and shear strength part A: joint

matching coefficient (JMC). Int J RockMechMin Sci 39:539–553

A New Stochastic Approach to Predict Peak and Residual Shear Strength of Natural Rock…

123

http://dx.doi.org/10.1038/ncomms4272
http://dx.doi.org/10.1038/ncomms4272
http://dx.doi.org/10.1007/s00603-016-1088-8
http://dx.doi.org/10.1007/978-3-319-07713-0

	A New Stochastic Approach to Predict Peak and Residual Shear Strength of Natural Rock Discontinuities
	Abstract
	Introduction
	Rationale of the New Approach for Discontinuity Shear Strength Prediction
	Description of the Semi-Analytical Model for Shear Strength
	General Principle
	Model Inputs
	Identifying the Active Facets
	Computing Shearing and Sliding Forces
	Progressive Modification of Asperity Geometry
	Model Outputs

	Description of the Random Field Model for Natural Discontinuities
	Experimental Facilities and Experimental Programme
	Materials and Discontinuities
	Photogrammetry
	Statistical Analysis of Surfaces
	Direct Shear Machines and Experimental Programme

	Experimental Results and Validation of the Model
	Experimental Results
	Validation of the Model
	Computational Time

	Validation of the Stochastic Approach for the Prediction of Discontinuity Shear Strength
	Example of Synthetic Surface and Distribution of Shear Strength
	Influence of the Number of Simulations
	Influence of Correlation Length and Variance of Heights
	Stochastic Modelling of Shear Strength
	Predictions from the Statistics of the Whole Surface
	Predictions from the Statistics of a Seed Trace


	Conclusions
	Acknowledgements
	Appendix A: Example of Calculation of Peak Shear Strength
	Appendix B: Derivation of Correlation Length theta 
	References




