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Effect of sampling plan and trend removal on residual uncertainty
Gordon A. Fentona,b, Farzaneh Naghibia and Michael A. Hicksb

aDepartment of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, NS, Canada; bFaculty of Civil Engineering and
Geosciences, Delft University of Technology, Delft, Netherlands

ABSTRACT
The ground is one of the most highly variable of all engineering materials. As a result, geotechnical
designs depend upon a site investigation to estimate the ability of the ground to perform
acceptably. For example, when a shallow foundation is being proportioned to avoid a bearing
capacity failure under a certain applied load, the frictional and cohesive properties of the ground
under the foundation must first be estimated through a site investigation. Questions which arise
are: How does the quality and intensity of the site investigation affect the design? Is more
investigation cost effective? If the site is sampled at one location and the foundation placed at a
different location, how does this mismatch affect the target design and the reliability of the final
foundation? By modelling the ground as a spatially variable material, questions such as the
above can be investigated through Monte Carlo simulation and sometimes theoretical
probabilistic models. Using such tools, this paper looks specifically at how the intensity
(frequency and spatial distribution) of a site sampling plan, and how the samples are used,
affects the understanding of the ground properties under a foundation. Interestingly, it is found
that removing the sample mean outperforms removing the best linear unbiased estimate (BLUE)
when the actual field correlation length is small but the BLUE correlation length is assumed
equal to the field size. Recommendations are made regarding number of samples and the type
of trend to best characterise the field.

Abbreviations: BLUE: best linear unbiased estimate; MCS: Monte Carlo simulation; LAS: local
average subdivision
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Symbols
a, b, c coefficients of the plane equation

a+ bxi + cyi
aj, bj, cj coefficients used to construct a, b, c
A, Ai matrices used in regression
bi
�

vector of covariances using random field
correlation length

bki
�

vector of covariances using BLUE corre-
lation length

bkij elements of vector bki
�bij

covariance between Xi and Xo
j

Cij elements of covariance matrix
dij parameter used in definition of residual

variance (= aj + bjxi + cjyi)
D edge dimension of the D× D square ran-

dom field
e random field cell area or domain
ei ith random field cell or domain
m number of random field cells in either x or y

direction
n number of random field cells
ns number of samples

G(x) stationary Gaussian random field
K≈ BLUE covariance matrix

Sx, Sy, Sxy, Sxx, Syy, So, Sox, S
o
y sums used in regression

V theoretical semi-variogram
V̂ estimated semi-variogram
xi coordinates of the centre of the ith

cell= (xj, yj)
X(xi) local average of the random field over the ith

cell (=Xi)
Xo
i ith sample observation

Xr(x) residual random field (= X(x)− m̂(x))
ŷj parameter used in estimate of correlation

length
bi
�

vector of BLUE coefficients

bij elements of vector bi
�

ge variance reduction due to averaging over a
random field cell

gij average correlation coefficient between ith
and jth cells

Dx distance between field cell centres
h dummy variable of integration
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u random field correlation length
û estimated correlation length
uk BLUE correlation length
m mean
m̂ estimated constant mean
m̂(x) estimated mean trend
j dummy variable of integration
r correlation coefficient
s standard deviation
s2
cell variance of a local average over a random

field cell
ŝ2
cell estimated value of s2

cell
s2
G variance of the Gaussian random field

s2
r variance of the residual

ŝ2
r estimated variance of the residual

t distance between points on the random field
tj semi-variogram lag distance (= jDx)

1. Introduction

Site characterisation is clearly an essential component of
any geotechnical design and a great deal of effort has
been devoted over recent decades on how to best per-
form such a characterisation. Questions such as “How
many samples should be taken?”, “How should these
samples be used in the design process?”, and “How do
these samples affect my level of understanding of the
site?” have always been of great concern. This paper
looks specifically at the answers to some of these
questions.

The ground is one of the most complex of engineering
materials due to its high spatial variability and uncer-
tainty about its engineering properties. While the engin-
eering properties of steel, concrete, and wood, for
example, have fairly well established and relatively
small uncertainties, ground properties can vary by even
many orders of magnitude from site to site, and even
within a single site.

As a result of the large uncertainty in the ground,
all geotechnical designs should start with a geotechni-
cal investigation so that the best “nominal” or
“characteristic” ground parameters can be used in
the design process. Traditionally, the intensity of the
site investigation has not been particularly important,
so long as a reasonable estimate of the characteristic
design values could be estimated. More specifically,
the benefit of an increased intensity of site investi-
gation has not been recognised nor rewarded in
most geotechnical design codes. These codes specify
a single resistance factor regardless of site investi-
gation effort.

Recent impetus has been towards providing reason-
able estimates of the reliability of designed

geotechnical systems and in properly reflecting target
reliabilities in design codes. In order to economically
achieve target reliabilities, the degree of understanding
of the ground providing the geotechnical resistance
needs to be properly evaluated. To investigate this
problem, the accuracy of characteristic value estimates
needs to be estimated as a function of site investi-
gation effort.

Jaksa et al. (2005) investigated the effects of site inves-
tigation scope on geotechnical risk reduction and specifi-
cally found the change in likelihood of over- or under-
design as a function of site investigation intensity.
Yang et al. (2017) studied slope reliability considering
site investigation data by conditional random field simu-
lations. Ching and Phoon (2017) investigated the uncer-
tainties associated with predicting trends in ground
properties. While Li, Hicks, and Vardon (2016) investi-
gated the effect of number and location of samples on
the reduction in uncertainty in a slope’s factor of safety,
the research presented here instead focuses on the more
general question of how the number of samples taken, as
well as how those samples are used to characterise the
site, affects the overall residual uncertainty, i.e. the uncer-
tainty that remains after accounting for the sample.

2. Effect of sampling intensity

This section looks specifically at how the number of soil
samples affects the accuracy of the estimated soil stat-
istics. It is assumed that our samples are error free and
are measuring a single soil property. Error free samples
are a best case scenario, yielding the greatest uncertainty
reduction with increasing sampling effort. Thus, the
results of this paper provide a lower bound on the
residual uncertainty after sampling.

The samples are used to attempt to estimate the mean,
m, standard deviation, s, and correlation structure of a
site. The correlation structure is characterised by a corre-
lation length, u. A key question to be answered here is:
How does the number of samples affect the accuracy of
the estimated statistics? Or, put another way, how
many samples are required to achieve a certain desired
accuracy in the estimates? The answer is developed by
considering a square site and using random field simu-
lation to generate realisations of the soil properties
over the site, sampling each realisation, and then com-
paring the estimated mean, variance, and correlation
length to the “true” values. The goal is to investigate
the discrepancies between the estimated statistics and
the true “local” statistics, with the latter obtained by
sampling the field at all locations. Note that the “local”
statistics will differ from the population parameters, m
(mean), s (standard deviation), and u (correlation
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length), which are used by the random field generator,
due to the fact that the local statistics are derived from
each single realisation. In detail, the soil is represented
by a stationary Gaussian random field, G(x), which is
discretised into a series of n equal sized cells each having
area e. The local average of the ith cell, denoted by X(xi)
and centred at the spatial position xi, is defined as

X(xi) = 1
e

∫
ei

G(x) dx, (1)

where ei is the ith cell domain, for i = 1, . . . , n. The
resulting discretised field is sampled at ns locations and
the samples are then used to estimate a mean trend,
m̂(x). The estimated trend can then be compared to
the field realisation to assess its ability to represent the
actual mean trend. Defining the residual to be

Xr(x) = X(x)− m̂(x), (2)

then m̂(x) is a good estimate of the mean trend if Xr is
generally small. If the site is sampled at all locations,
then m̂(x) can be taken to be equal to X(x) in the
event that a point-wise trend is assumed for m̂(x), in
which case Xr(x) = 0 everywhere. Sampling at all
locations is the best case since there is then minimum
residual uncertainty (zero in the case of a point-wise
trend).

Sampling at all locations is, of course, prohibitively
expensive and may also change the resulting field prop-
erties due to the act of measuring them. In practice, soil
properties are estimated from a relatively small number
of samples so that m̂(x) will at best be an approximation
of X(x), with varying degrees of accuracy.

In assessing the ability of m̂(x) to represent X(x), it is
useful to ask howmuch residual uncertainty remains? To
answer this question, consider the variance of the
residual Xr(x) defined by Equation (2),

ŝ2
r = 1

D× D

∫
D×D

X2
r (x) dx

≈ 1
n

∑n
i=1

[X(xi)− m̂(xi)]2, (3)

where D is the edge dimension of the D× D square ran-
dom field. Since the domain is broken up into n cells in
the simulation, the summation form on the right, in
which xi is the location of the centre of the ith cell, is
used. Each cell has its own random field value,
Xi = X(xi), and its own estimated mean, m̂(xi). In
both the simulation and theory, Xi is taken to be a
local arithmetic average of the Gaussian random field
as defined by Equation (1).

The theoretical residual variance, s2
r , is calculated as

the mean of the sample variance (assuming unbiased-
ness, i.e. that E[ŝ2

r ] = s2
r ),

s2
r =

1
n

∑n
i=1

E[(Xi − m̂(xi))
2]. (4)

Note that, in general, E[(Xi − m̂(xi))
2] is non-stationary

– it depends on where xi is relative to sampled locations.
For example, when the trend, m̂(xi), passes through one
or more sampled values, the residual values and their
variances are both zero at those locations. In addition,
the estimate in Equation (4) is the average over the
field of mean values, while the estimate in Equation (3)
is the average over the field of cell values. There thus
might be a sampling difference between the two
estimates.

The agreement between m̂(x) and X(x) can also be
investigated by looking at the residual correlation length,
i.e. how does the trend removal affect the perceived cor-
relation length?

Nine sampling schemes are considered, as illustrated
in Figure 1, where ns is the number of samples taken
from the field. The paper concentrates on the
ns = 3, 5, 7 and 9 sampling schemes for simplicity –
the ns = 2, 4, 6 and 8 results are simply intermediate
to the presented results. In some cases, a further “maxi-
mum” sampling scheme is performed, where every point
in the field is sampled, ns = all, to investigate what the
maximum attainable uncertainty reduction is.

ns = 1

1/2

1/2

ns = 2

1/3 1/3

1/2

ns = 3

1/4 1/2 3/4

0.4

0.7

ns = 4

1/4 1/2 3/4

1/4

1/2

3/4

ns = 5

1/4 1/2 3/4

1/4

1/2

3/4

ns = 6

1/4 1/2 3/4

1/4

1/2

3/4

ns = 7

1/4 1/2 3/4

1/4

1/2

3/4

ns = 8

1/4 1/2 3/4

1/4

1/2

3/4

ns = 9

1/4 1/2 3/4

1/4

1/2

3/4

Figure 1. Sampling schemes. Field size is assumed to be 1 × 1.
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For each sampling scheme, three types of trend
removal are performed: (a) removing a constant sample
mean estimated from the sample, (b) removing a bilinear
trend surface fit to the sample, and (c) removing a best
linear unbiased estimate (BLUE) surface based on the
sample and an assumed covariance structure. The
residual statistics are determined theoretically and then
validated by Monte Carlo simulation (MCS) using
2000 realisations for each case. In both the theoretical
analysis and the MCS, the field is discretised into
128 × 128 cells. The MCS random fields are generated
using the local average subdivision method (Fenton
and Vanmarcke 1990) assuming a Markovian corre-
lation function of the form

r(t) = exp
−2|t|
u

{ }
, (5)

where t is the distance between two points in the field
and u is the assumed correlation length. This correlation
function was selected due to its simplicity, being a func-
tion of a single parameter, u, and, because the paper is
not site specific, there is no reason to select any particular
alternative correlation function. Indeed, in practice, there
are rarely sufficient data to justify the use of other, per-
haps more sophisticated, correlation functions. The var-
iance of a local average Xi is defined in terms of the
correlation function as

Var[Xi] = s2
cell = s2

G
1
e2

∫
ei

∫
ei

r(j− h)dj dh

⎛
⎜⎝

⎞
⎟⎠

= s2
Gge. (6)

The covariance between two local averages, Xi and Xj,
is defined as

Cov[Xi, Xj] = s2
G

1
e2

∫
ei

∫
ej

r(j− h)dj dh

⎛
⎜⎝

⎞
⎟⎠

= s2
Ggij. (7)

The random field is assumed to have variance s2
G = 1.0

so that the results presented in this paper are measures of
variance reduction relative to the field variance. In other
words, the actual value of the field variance is not impor-
tant to the results of this paper.

3. Theoretical model

In this section, the theoretical model for estimating the
residual variance, s2

r , is derived for the three types of
trend removals mentioned in the previous section.

3.1. Constant sample mean removed

In this case, the mean trend, m̂(x) = m̂ , is assumed to be
constant and equal to the sample mean,

m̂ = 1
ns

∑ns
i=1

Xo
i , (8)

where ns is the number of samples and Xo
i is the ith

sample observation, i = 1, . . . , ns, as extracted from
the field at the locations indicated in Figure 1. The
assumption of a constant mean is commonly made in
geotechnical site investigations with limited sampling.
The mean residual variance is calculated by substituting
Equation (8) into Equation (4), giving,

s2
r =

1
n

∑n
i=1

E[(Xi − m̂)2]= 1
n

∑n
i=1

E[X2
i + 2Xim̂ + m̂2]

= 1
n

∑n
i=1

s2
cell −

2
ns

∑ns
j=1

Cov[Xi, X
o
j ]+

1
n2s

∑ns
j=1

∑ns
k=1

Cov[Xo
j , X

o
k]

{ }

= s2
G ge −

2
nns

∑n
i=1

∑ns
j=1

gij +
1
n2s

∑ns
j=1

∑ns
k=1

g jk

{ }
(9)

The reduction in variability can now be expressed as
the dimensionless ratio of standard deviations:

sr

scell
=

������������������������������������������
1− 2

nnsge

∑n
i=1

∑ns
j=1

gij +
1

n2sge

∑ns
j=1

∑ns
k=1

g jk

√√√√ . (10)

3.2. Bilinear trend surface removed

A plane of the form

m̂(xi) = a + bxi + cyi, (11)

is fitted to the sample using regression. A trend of this
form would be normally selected in a geotechnical inves-
tigation if the site data display a significant trend. In
Equation (11), m̂(xi) is the estimated mean of the ran-
dom field value of the ith cell having coordinates
xi = (xi, yi), and

a =
∑ns
j=1

ajX
o
j , b =

∑ns
j=1

bjX
o
j , c =

∑ns
j=1

cjX
o
j , (12)

are the unknowns to the system of equations

ns Sx Sy
Sx Sxx Sxy
Sy Sxy Syy

⎡
⎣

⎤
⎦ a

b
c

⎡
⎣

⎤
⎦ =

So

Sox
Soy

⎡
⎣

⎤
⎦, (13)
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where

Sx =
∑ns
j=1

xj , Sy =
∑ns
j=1

yj , Sxy =
∑ns
j=1

xjyj ,

Sxx =
∑ns
j=1

x2j , Syy =
∑ns
j=1

y2j , S
o =

∑ns
j=1

Xo
j ,

Sox =
∑ns
j=1

xjX
o
j , S

o
y =

∑ns
j=1

yjX
o
j , (14)

and where xj = (xj, yj) are the coordinates of the centre
of the jth sampled cell. The unknowns a, b, and c in the
system of equations shown in Equation (13) can be expli-
citly solved using Cramer’s rule as follows:

a = det (A1)
det (A)

, b = det (A2)
det (A)

, c = det (A3)
det (A)

, (15)

where A is the 3× 3 matrix of coefficients shown in
Equation (13) and Ai(i = 1, 2, 3) is a 3× 3 matrix
obtained by replacing the ith column of matrix A with
the right-hand side vector in Equation (13). Substituting
the corresponding matrix determinants into Equation
(15) and extracting the coefficients of Xo

j gives the fol-
lowing components:

aj = {[SxxSyy − S2xy]− Sx[Syyxj − Sxyyj]

+Sy[Sxyxj − Sxxyj]}/ det (A),

bj = {−[SxSyy − SxySy]+ ns[Syyxj − Sxyyj]

+Sy[Sxyj − Syxj]}/ det (A),

cj = {[SxSxy − SxxSy]+ ns[Sxxyj − Sxyxj]

−Sx[Sxyj − Syxj]}/ det (A), (16)

from which the unknowns a, b, c can be found using
Equation (12).

Now the residual variance can be calculated by substi-
tuting Equation (11) into Equation (4),

s2
r =

1
n

∑n
i=1

E[(Xi− m̂(xi))
2]= 1

n

∑n
i=1

E[(Xi−a−bxi−cyi)
2]

= 1
n

∑n
i=1

E Xi−
∑ns
j=1

ajX
o
j −

∑ns
j=1

bjX
o
j

( )
xi−

∑ns
j=1

cjX
o
j

( )
yi

( )2[ ]

= 1
n

∑n
i=1

E Xi−
∑ns
j=1

dijX
o
j

( )2[ ]

= 1
n

∑n
i=1

E X2
i −2Xi

∑ns
j=1

dijX
o
j +

∑ns
j=1

dijX
o
j

( )2[ ]

= 1
n

∑n
i=1

{
s2
Gge−2

∑ns
j=1

dijCov[Xi,X
o
j ]+

∑ns
j=1

∑ns
k=1

dijdikCov[X
o
j ,X

o
k ]

}

=s2
G ge−

2
n

∑n
i=1

∑ns
j=1

dijgij+
1
n

∑n
i=1

∑ns
j=1

∑ns
k=1

dijdikg jk

{ }
, (17)

where

dij=aj+bjxi+cjyi, (18)

and aj, bj, cj are obtained via Equation (16). As above, the
reduction in variability can now be expressed as the
dimensionless ratio of standard deviations:

sr

scell
=

�������������������������������������������������
1− 2

nge

∑n
i=1

∑ns
j=1

dijgij+
1
nge

∑n
i=1

∑ns
j=1

∑ns
k=1

dijdikg jk

√√√√ .

(19)

3.3. Best linear unbiased surface removed

BLUE surfaces are commonly used in the mining indus-
try in the form of “Kriging” and often are a reasonable
means of estimating geotechnical properties given a set
of observations. However, BLUE requires an a-priori
knowledge of the site’s covariance structure. Various
options regarding covariance structure will be con-
sidered here. Assuming a zero mean for simplicity, the
BLUE of the field at the spatial location xi is defined as

m̂(xi) =
∑ns
j=1

bijX
o
j , (20)

where ns is the number of samples and Xo
j is the random

field value of the jth sample, j = 1, . . . , ns. The BLUE
coefficients, bij, are obtained from

bij = K−1
ij bki , (21)

or in matrix form

b
�
i = K≈

−1 bki
�
, (22)

where the matrix K≈ , having elements

Kij = Cov[Xo
i , X

o
j ] = s2

Ggij, i, j = 1, . . . , ns, (23)

is the covariance matrix between samples using the
BLUE correlation length, uk, in Equations (5)–(7). Note
that BLUE uses covariances to estimate the field values
at unobserved locations, which requires that a correlation
length be specified. Since it is unlikely that the actual cor-
relation length of the field is known on the basis of just
the sample, the correlation length used for the BLUE esti-
mation, uk, may be different from the actual correlation
length, u.

The vector bki
�
, having elements

bkij = Cov[Xi, X
o
j ] = s2

Ggij, j = 1, . . . , ns, (24)

is the covariance vector between samples and the ith
element, again using the BLUE correlation length, uk,
in Equations (5)–(7).
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The residual variance is then calculated by substitut-
ing Equation (20) into Equation (4) yielding the follow-
ing result,

s2
r=

1
n

∑n
i=1

E[(Xi−X̂i)
2
]=1

n

∑n
i=1

{E[X2
i ]−2E[XiX̂i]+E[X̂2

i ]}

=s2
cell−

2
n

∑n
i=1

∑ns
j=1

bijbij+
1
n

∑n
i=1

∑ns
j=1

∑ns
l=1

bijbilCjl

=s2
G ge−

2
n

∑n
i=1

∑ns
j=1

bijgij+
1
n

∑n
i=1

∑ns
j=1

∑ns
l=1

bijbilgjl

{ }
, (25)

where Cij is defined in the same fashion as Kij,

Cij=Cov[Xo
i ,X

o
j ]=s2

Ggij, i, j=1, ...,ns, (26)

except that this is the covariance between samples using
the actual field correlation length, u, in Equations (5)–
(7). Similarly,

bij = Cov[Xi, X
o
j ] = s2

Ggij, j = 1, . . . , ns, (27)

is the covariance vector between samples and the ith
element using the actual correlation length, u, in
Equations (5)–(7). Again, the reduction in variability
can be expressed as the dimensionless ratio:

sr

scell
=

��������������������������������������������������
1− 2

nge

∑n
i=1

∑ns
j=1

bijgij+
1
nge

∑n
i=1

∑ns
j=1

∑ns
l=1

bijbilg jl.

√√√√
(28)

If the actual and the BLUE correlation lengths are
equal, i.e. if u = uk, then Equation (25) simplifies to

s2
r = s2

cell −
1
n

∑n
i=1

bT
i
�
bi
�

= s2
G ge −

1
n

∑n
i=1

∑ns
j=1

bijgij

{ }
. (29)

The case where u = uk gives the best estimate of the
field and will be considered to be one of the options
for the BLUE surface removed residual field. Note also,
that if the entire field is sampled, ns = all, then the
BLUE surface becomes identical to the random field,
X(xi), and as such the residual field becomes zero every-
where. In other words, for BLUE, the ns = all case is a
perfect representation of the random field and will not
be considered further in this paper.

4. Estimation of correlation length

Once m̂(x) has been established using the soil samples,
the correlation length is estimated as follows:

(1) for each direction through the soil domain,
i = 1, 2,

(2) estimate the semi-variogram along all lines through
the domain in direction i using the entire Xr(x) field.
If in any direction, there are m cells, then the semi-
variogram is estimated according to

V̂(tj) = 1
2(m− j)

∑m−j

i=1

(Xi+j − Xi)
2,

j = 0, 1, . . . , m− 1,

(30)

where tj = jDx with Dx being the distance between
field cell centres.

(3) The theoretical semi-variogram is defined as

V(tj) = 1
2
E[(Xi+j − Xi)

2] = s2
cell(1− r(tj)). (31)

Assuming a Markovian correlation function (see
Equation (5)), the theoretical semi-variogram can
be written in terms of the correlation length as

V(tj) = s2
cell(1− e(−2|t|)/u), (32)

(4) fit the theoretical semi-variogram in Equation (32),
having parameter u (correlation length), to the
semi-variogram estimated in step 2, also defined in
Equation (30), by minimising the sum of squared
errors (i.e. regression),

E =
∑0.9m
j=1

(V̂(tj)− V(tj))
2

=
∑0.9m
j=1

(V̂(tj)− s2
cell(1− e(−2|t|)/u))

2
, (33)

with respect to u and solving for the estimated cor-
relation length û :

û =
∑0.9m

j=1 t2j∑0.9m
j=1 tjŷj

, (34)

where

ŷj = − 1
2
ln 1− V̂(tj)

ŝ2
cell

( )
. (35)

Note that the sums do not include the estimated
semi-variograms at the longest lags, since these
have large sampling uncertainty.

5. Results

Consider first the normalised standard deviation of the
residual, Xr(x), given by Equations (10), (19), and (28),
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and as estimated by simulation. This measure of the remain-
ing uncertainty should decrease as the trend estimate
improves. Figure 2 illustrates the effect of actual correlation
length and number of samples taken on the normalised
residual standard deviation. Plot (c) in Figure 2 is generated

for the case where the actual and the BLUE correlation
lengths are equal, i.e. uk = u, which is the best case scenario
for the BLUE surface removed since it leads to the most
accurate prediction of the random field.

It is apparent from Figure 2 that the agreement
between theory and simulation is excellent for the con-
stant sample mean and BLUE methods, although, theory
somewhat overestimates simulation in the bilinear trend
method for smaller values of u/D and particularly when
ns = 3. This discrepancy may be due to sampling error
or a possible bias in the estimator ŝ2

r . However, the
agreement improves as u/D � 1. In all cases, the
error is less than about 5%, so that the theory is suffi-
ciently accurate to replace the simulation for all three
methods considered.

Figure 2 shows that the ability of m̂(x) to represent
X(x) improves as the actual correlation length increases.
In the limit, as u/D � 1, all random fields become
uniform (under the assumed finite variance correlation
structure); i.e. random from realisation to realisation,
but constant within each realisation. In this limiting
case, the sample perfectly predicts the uniform field,
and the residual becomes zero everywhere so that
sr = 0. It is apparent in Figure 2 that all curves are
heading towards 0, as u/D � 1.

Figure 3 illustrates the effect of the type of trend
removed on the residual uncertainty for ns = 3 and
ns = 9. The BLUE surface is obtained in two ways: first
by assuming a fixed correlation length, uk/D = 1.0,
and second by assuming that the BLUE correlation length
is equal to the actual field correlation length, uk = u, as in
Figure 2(c), which is a best case scenario.

One of the perhaps surprising results of Figure 3 is
that the removal of a bilinear trend is not nearly as
good as the removal of the constant sample mean and
BLUE surface at smaller correlation lengths, and
especially at a lower number of samples. The reason
for this becomes apparent when, for example, the case
where ns = 3 is considered. If the correlation length is
small, then the three samples will be largely independent,
and the resulting fitted bilinear plane could (and often
does) end up with quite an unrepresentative slope, lead-
ing to a high variability in the residual. Even when
ns = 9 the residual variability is higher at low corre-
lation lengths than seen using the constant sample
mean. The performance of the bilinear trend might be
improved by choosing different sampling locations, per-
haps more spread out, but this idea was not investigated
in this paper. At larger correlation lengths, for example,
above about u/D = 1, the bilinear trend does start to
show slightly better performance than the constant
sample mean at higher numbers of samples, but the
difference is slight.
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b) Sample Trend Removed
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c) BLUE Surface Removed (θk  = θ)
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Figure 2. Normalised standard deviation of the residual versus
normalised correlation length for (a) sample mean removed,
(b) sample bilinear trend removed, and (c) BLUE surface
removed. Theoretical results (Equations (10), (19), (28)) are
shown as points while simulation results are shown using lines.

GEORISK: ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS 7



The BLUE surface outperforms the other two methods
when the BLUE correlation length is set equal to the actual
field length (ideal case). However, the difference between
the BLUE surface and the constant sample mean
approaches is not large even at small correlation lengths,
where more of a difference might have been expected.

In real situations where only a handful of samples are
taken from a site, the actual field correlation length is
unlikely to be known. In this case, the BLUE correlation
length must either be estimated from the sample or
assumed, perhaps from the literature about similar
sites, and almost certainly the actual and the BLUE cor-
relation lengths will be different. Figure 4 shows the nor-
malised residual standard deviation for fixed BLUE
correlation lengths of uk/D = 0.2, 1.0, and 2.0. It is
apparent from Figure 4 that the agreement between the-
ory and simulation is excellent for uk/D = 1.0, and 2.0.
When uk/D = 0.2 the agreement degrades somewhat,
with theory being larger than simulation, when u/D
becomes large. The largest error seen is less than 15%,
however, so that theory can be used reasonably accu-
rately in place of simulation.

When u/D ≤ 0.2, the lowest normalised standard
deviation of about 1 is obtained when uk/D = 0.2.
The lowest normalised standard deviation ranges
from 0.7 to 0.9 when uk/D = 1.0 and when
0.2 , u/D ≤ 1.0, and is as low as 0.2 when
uk/D = 2.0 and u/D . 1.0. In other words, when the
actual correlation length is small, the smallest normalised
residual standard deviation is achieved if the BLUE cor-
relation length is also selected to be small, which makes
sense. At the other end of the spectrum, when the actual
correlation length is large, the lowest normalised residual
standard deviation overall is achieved when the BLUE
correlation length is also selected to be large. A reason-
able compromise appears to be to select uk/D = 1.0

since this choice gives reasonably low normalised
residual standard deviation over the whole range of
actual correlation lengths considered.

Figure 5 shows how the assumed value of the BLUE
correlation length affects the residual variability. Three
cases are considered; uk/D = 0.2, uk/D = 2.0, and
the ideal case where uk = u. Clearly, the ideal case
gives the lowest residual variability over the whole
range of actual correlation lengths. As implied previously,
when the actual correlation length is small, the
uk/D = 0.2 and the ideal case are similar. For large
actual correlation lengths, the uk/D = 2.0 and the
ideal case are similar. The effect of the number of samples
is relatively minor at small correlation lengths but larger
ns leads to lower residual variability at larger correlation
lengths (in agreement with the findings of Lloret-Cabot,
Hicks, and Van Den Eijnden 2012). In other words,
using BLUE, there is little advantage to increasing the
sample size if the actual correlation length is small.

A second measure of the quality of the trend type con-
sidered in this paper is how well the estimated corre-
lation length agrees with the actual correlation length,
as shown in Figure 6. Figure 6 is based solely on simu-
lation results and the BLUE results do not include
ns = all, since that case leads to the ideal residual of
zero everywhere whose correlation length is undefined.

The correlation length estimated from the residual, ur ,
will agree with the actual correlation length used in the
simulation, u, when the ratio ur/u ≈ 1 and the curve
approaches a diagonal line. In Figure 6(a,b), which are
the sample mean and sample trend removed cases, it
can be seen that this agreement only occurs when the
entire field is sampled and the correlation length is rela-
tively small (i.e. significantly less thanD). In other words,
when the entire field is sampled (ns = all), the estimated
correlation length becomes approximately equal to the
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a) ns  = 3

Sample Mean Removed
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BLUE Surface Removed (θk /D = 1)

BLUE Surface Removed (θk  = θ)
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Figure 3. Normalised standard deviation of the residual versus normalised correlation length using theory (Equations (10), (19), (28)) for
(a) ns = 3 and (b) ns = 9.
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actual correlation length when samples are relatively
independent (small u).

Note that the correlation length estimated from the
simulated residual, ur , is actually the correlation length

acting between local averages, while u is the point-wise
correlation length of the Gaussian random field, G.
The correlation length acting between local averages is
expected to be somewhat higher than the point-wise cor-
relation length because correlation between averages is
generally higher than correlation between points,
especially at smaller correlation lengths. This can be
seen in Figure 6(a–c) for the best cases (ns = all and
uk = u) at very small correlation lengths, where the esti-
mate is reasonably accurate and unbiased, by the fact that
ur remains somewhat higher than u.

In general, when ns , all, uk is fixed, and u/D , 1,
the correlation length is overestimated, and often con-
siderably overestimated, especially when the actual cor-
relation length is very small. This occurs because errors
between the estimated trend and actual field trend are
perceived in the estimation process to be caused by a
strong lingering correlation – hence a longer correlation
length is estimated to account for the apparent residual
trend. For example, the constant mean estimated from
ns = 3 samples will almost certainly not be equal to
the actual field average. The resulting residual field will
have a non-zero average suggesting a longer correlation
length – field values tend to be either all above or all
below the assumed field mean of zero. As it turns out,
the estimated correlation length seems to approach the
distance between the samples when u/D , 1. The
reason for this is under investigation.

For larger correlation lengths, i.e. when u/D . 1, the
estimated correlation length is generally less than the
actual correlation length due to estimator bias (Fenton
and Griffiths 2008). Interestingly, when uk/D = 0.2 in
the BLUE case, the longer correlation lengths are actually
more accurately estimated. Why this is so is also under
investigation.

The effect of number of samples on the correlation
length estimate is minor in the case of the BLUE
approach and not particularly large in the sample
mean and bilinear trend removed approaches. In other
words, over the range of the number of samples con-
sidered in Figure 1, there is no particular sampling
scheme which results in a significant improvement in
the accuracy of the estimated correlation length.

In summary, the best practical approach to estimating
the correlation length seems to be using BLUE with a
small value of uk/D.

Figure 7 shows in more detail the effect of the number
of samples and sampling methodology on the estimated
correlation length. The general effect of increasing the
number of samples taken is to reduce the estimated cor-
relation length (see Figure 7(a,b)). This makes sense,
since an increase in the number of samples improves
the trend estimate, resulting in a more “independent”
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a) BLUE Surface Removed (θk/D = 0.2)
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b) BLUE Surface Removed (θk/D = 1)
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c) BLUE Surface Removed (θk/D = 2)
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Figure 4. Normalised standard deviation of the residual versus
normalised correlation length for BLUE surface removed using
fixed uk/D = 0.2 in (a), 1.0 in (b) and 2.0 in (c). Theoretical results
(Equation (28)) are shown as points while simulation results are
shown using lines.
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a) ns  = 3

θk  = θ
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b) ns  = 9

Figure 5. Normalised standard deviation of the residual versus normalised correlation length for BLUE surface removed (Equation (28))
for ns = 3 in (a) and ns = 9 in (b).
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c) BLUE Surface Removed (θk  = θ)
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d) BLUE Surface Removed (θk/D = 0.2)
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e) BLUE Surface Removed (θk/D = 1)
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f) BLUE Surface Removed (θk/D = 2)

Figure 6. Simulation-based estimated correlation length of the residual versus actual random field correlation length for each method.
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residual field. The difference between the various
methods is not particularly large, except for the case of
BLUE with uk/D = 0.2, which produces the best esti-
mate of the correlation length. Figure 7(c) illustrates
the accuracy of the correlation length estimate in the
best cases (ns = all for sample mean and trend removed
methods and uk = u for BLUE). This plot again reflects
the fact that the correlation length can only be accurately
estimated when u/D ,, 1.

6. Conclusions

The paper investigates the effect of number of samples
and type of trend removal on residual uncertainty. The
basic goal is to study how our uncertainty in a geotech-
nical site investigation is best reduced, taking into
account the investigation intensity.

Probably, the most important measure of the value of
site investigation is the magnitude of the residual field
standard deviation after a trend estimated from the site
sample has been removed. Figure 3 suggests that more
samples reduces uncertainty when the field correlation
length is small, but does not have much impact when
the field correlation length is large. The BLUE trend
removed approach under the ideal conditions where the
assumed correlation length equals the actual correlation
length (uk = u) outperforms all of the other methods
considered. However, it is unrealistic to expect that the
assumed correlation length will equal the true correlation
length. The best compromise appears to be taking
uk/D = 1, which can be seen from Figure 5 to lead to
good variance reduction at high correlation lengths and
intermediate variance reduction at small correlation
length. The BLUE approach using uk/D = 1 matches
the sample mean removed case for small correlation
lengths and ns = 3, although, the sample mean removed
case is better than BLUE when ns = 9, as seen in Figure
3. In general, this last observation suggests that for small
correlation lengths, the optimum trend is the sample
mean for any reasonable number of samples. At longer
correlation lengths, all considered methods are similar,
with the BLUE approach using uk/D = 1 slightly in the
lead for larger numbers of samples. This observation
suggests that BLUE is better to use if the actual correlation
length is large relative to the domain size.

As mentioned above, a larger number of samples leads
to lower residual variability at smaller correlation
lengths, which can be seen in Figures 2 –4, but does
not seem to make that much difference at larger corre-
lation lengths. In other words, if the actual correlation
length is large, there is no particular advantage to
increasing the number of samples above, say, ns = 3.

Figure 6 shows that correlation length is not well esti-
mated except under ideal cases where ns = all and/or
uk = u, which are not very realistic, nor practical. Figure
7 provides the rather surprising observation that the
overall best correlation length estimate is obtained
when the BLUE trend with uk/D = 0.2 is removed
from the random field.
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Figure 7. Simulation-based estimated correlation length of the
residual versus actual random field correlation length for ns= 3,
9, and best case.
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