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A B S T R A C T

Site investigation in combination with field and laboratory testing, plays a vital role in characterizing the soil
profile for geotechnical design in order to reduce uncertainty. In spite of this, site investigations are often limited
in scope due to high costs. In this paper, conditional random fields are used to examine the influence of soil
strength mean, standard deviation and spatial correlation length on the risk of slope design failure for different
levels of site investigation scope. An undrained slope example is used to illustrate how the proposed approach
can be used to assess the risk reduction that can be obtained as the scope of a site investigation is increased. By
combining the cost of site investigation with the cost of slope failure, the results indicate that there exists an
optimal site investigation scope, beyond which the cost of additional boreholes does not justify the cost savings
due to reduced slope failure risk.

1. Introduction

Almost all natural soil and rock deposits are highly variable in their
properties. Soil properties can vary by orders of magnitude from site to
site, and even within a single site [32]. As a result, the soil profiles
cannot be identified with certainty, even if an extensive subsurface
exploration program is executed. In most cases, measurements are only
obtained from a limited number of site investigation tests at scattered
locations over a construction site (e.g., [6]). The site investigation
phase of any geotechnical design plays a vital role, where inadequate
characterization of the subsurface conditions may contribute to either a
significantly over design that is not cost-effective, or an under design,
which may lead to potential failures which can be even more serious
when continued into full-life costing. It is not realistic to expect a site
investigation to reveal ground conditions in their entirety, but in-
creasing the scope of site investigation (i.e., additional sampling) the
risk of a design should reduce but initial costs go up. The benefit of a
detailed site investigation has not been recognised nor rewarded in
most geotechnical design codes. These codes specify a factor of safety
regardless of site investigation effort. However, is it really worth
spending additional money to perform additional samples? Most of the
time, the scope of the site investigation is governed by how much the
client and project manager are willing to spend, rather than by what is
needed to characterize the subsurface conditions. Therefore, it is of

great significance to quantify the risk associated with different site in-
vestigation scopes (e.g., [23,34;35]).

Probabilistic methods have been applied in geotechnical en-
gineering to assess the effectiveness of site investigation strategies.
Goldsworthy et al. [9] investigated the effect of a single sample location
on the design of a pad footing. Jiang et al. [17] and Jiang et al. [19]
discussed the optimal borehole location which can gain maximum
amount of prior knowledge based on conditional random field simu-
lation. Yang et al. [36] proposed a framework which can quantify the
error probabilities for different sampling locations by Monte Carlo si-
mulation. The optimal sampling location near the slope crest is found
by minimizing the probability of making the wrong decisions while
giving the most information.

A well-designed geotechnical investigation and appropriate in situ
and/or laboratory testing should involve optimal sampling locations
and adequate sampling tests. The best sampling location of a site in-
vestigation is only part of the story. The scope of site investigation is
also important for reduce the uncertainty as far as possible. Alhalaby
and Whyte [1] concluded that 90% of risk to projects originate from
unforeseen ground conditions which could often have been avoided by
adequate and full site investigation (e.g., [21,24;30]). It is difficult to
assess the effectiveness of a site investigation. The only practical means
is to have complete information about the site which can act as a
benchmark. However, gaining complete knowledge is infeasible. Jaksa
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et al. [16] proposed a framework which examined the site investigation
effectiveness in a probabilistic manner using Monte Carlo simulation.
The basis for the framework uses random field theory to generate
spatially correlated properties of a “real” site where all subsurface in-
formation is known. The random field generation is based on the
random finite element method which is described in detail in Fenton
and Griffiths [5]. Full source code random finite element method
downloads are available at the website www.mines.edu/~vgriffit. A
virtual site investigation is then carried out numerically by sampling
the “real” site at discrete locations. Using the limited information
gained from the virtual site investigation, foundation design can then
be performed. The efficiency of a site investigation scope can then be
assessed by quantifying the discrepancy between the foundation design
based on limited information and the design based on complete
knowledge. Goldsworthy et al. [8] refined the approach by applying the
risk to a foundation design. The foundation design based on limited
measurements was performed using a deterministic analysis approach
[31]. The foundation analysis based on partial information did not
account for the spatial variability of soil properties.

There is currently no means available for determining the most
appropriate scope of geotechnical investigation to quantify the risk of
slope failure. When it comes to making use of the site investigation
data, there arises the question: How should the samples be used in the
design process? The idea is to use the data more effectively, so that it is
worth the effort of cost spent in carrying out the investigation.

The present work is thus inspired by the limitations of previous
works. Random fields are used in this paper to model spatially variable
soil properties of a “real” site. The site investigation is then carried out
numerically at discrete locations from the “real” site. A conditional
random field approach is utilized to characterize the spatial variability
of soil properties accounting for obtained limited investigation data. By
comparing the difference in the designs based on complete and limited
information, both Type I (the stability analysis of slope suggests that the
slope is safe when it is not) and Type II errors (the stability analysis of a

slope suggests that the slope is unstable when it actually is safe) can be
identified based on a hypothesis test. The risk can be quantified by
assigning different consequences for these two types of errors. As such,
this paper proposes a framework to quantify the impact of varying the
scope of a site investigation on the risk of a slope design. An undrained
slope is evaluated as an example to illustrate that there is an optimal
site investigation scope, which leads to the least risk, and where addi-
tional sampling becomes non-cost effective. The proposed framework
can provide better insight into risk and provide a way to determine the
optimal scope of site investigation based on the spatial variability of the
ground conditions.

2. Methodology

It is never possible to know the geotechnical properties at every
location. However, it is possible to generate soil profiles, by means of
random field theory (e.g., [33]). Consider a realization of a two-di-
mensional domain. The soil profile is first discretised into a series of
elements, e.g., ×0.5 m 0.5 m in size and geotechnical properties as-
signed to each element. Since the site has been simulated, its properties
are “known” completely at every location and the finite element
method can be used to assess whether the slope is stable or not.

Compare the above idealisation with the usual situation en-
countered in practice, where the soil properties are known only at a
limited number of locations, as a result of in-situ or laboratory tests.
Here we assume that the site investigation is performed based on
continuous sampling, as would occur with a cone penetration test
(CPT). If one then designs a slope based on the obtained undrained
shear strengths, the design has uncertainty because the decision about
whether a slope fails or not is made on the basis of a limited set of
samples from the slope. The goal of this paper is to relate error prob-
abilities with sampling strategies to determine the optimal sampling
programme. It is obvious that more sampling locations yield better
estimates of slope stability but is also more expensive.

Nomenclature

b covariances vector between the unconditional random
field values at the known points and the prediction point

bs component of b
Cfalse safe consequence of false safe
Cfalse unsafe consequence of false unsafe
C covariances matrix between the unconditional random

field values at the known points
Cjk covariance between known observations j and k
CSI cost of the site investigation
D foundation depth ratio
FS factor of safety
H slope height
i slope counter
IF real stability index
IFc estimated stability index
j known point
k known point
m total number of real slopes
ns number of observations
N total number of points in the field
nsim number of conditional simulations
p unknown values
pfalse safe probability of false safe
pfalse unsafe probability of false unsafe
p fc

conditional probability of failure
pf unconditional probability of failure
Ri risk associated with site investigation

s known points
xp spatial position of unknown points in the random field
Xs observations
xs spatial position of observation
X x( ) normally distribution random field
X x( ) Kriging estimator based on measurements
X x( )c normally distribution conditional random field
X x( )uc unconditional random field
X x( )uc Kriging estimator based on unconditionally simulated va-

lues at the same measurement locations
Z x( ) lognormally distribution random field
Z x( )c lognormally conditional random field
α slope angle
β vector of weighting coefficient Simple Kriging weight

matrix
βs weighting coefficient
γ soil unit weight

γsat saturated soil unit weight
θcu spatial correlation length of undrained cohesion
μcu mean undrained cohesion
μpfalse safe

mean probability of false safe
μpfalse unsafe

mean probability of unfalse safe
μR mean risk associate with site investigation
μX normal mean strength
μZ lognormal mean strength
σcu standard deviation undrained cohesion
σE standard deviation of estimation error
σX normal standard deviation
σZ lognormal standard deviation
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Suppose the statistics of undrained shear strength of slopes are
given, a slope sample is generated by unconditional random field si-
mulation. This slope is treated as a “real” slope. And the stability of the
slope can be analyzed by the finite element method. The factor of safety
is normally used to check the level of slope stability. In slope stability
analysis, failure can be checked without using strength reduction
method (e.g., [13]), but by merely checking to see if the current rea-
lization fails to converge within a user-specified iteration ceiling, im-
plying stability failure (e.g., [15]). This stability assessment is based on
the assumption that the undrained shear strength of all the elements are
known. So failure or non-failure of a given realization is defined by a
stability index IF as below

=
−{I 1 failure

0 non failureF (1)

Monte Carlo simulation can be used to estimate the unconditional
probability of failure by randomly simulating a sequence of realizations
of unconditional random field.

∑≈p
n

I1
f

sim

n
F

sim

(2)

The probability of failure pf is estimated as the number of realiza-
tions which failed divided by the total number of realizations (nsim).

However, in reality slope stability is characterized by various un-
certainties due to the inherent spatial variability and lack of knowledge
of soil properities. The subsoil properties are often measured at a lim-
ited number of locations. An estimation of soil properties at unsampled
locations is a common requirement during the design of a geotechnical
project. Some investigators (e.g., [28;25]) used a Kriging method to
predict the soil profile at unsampled locations based on limited data
from site investigation. As a best linear unbiased estimation method,
Kriging estimates the value of a parameter at any point based on a
weighted linear average of nearby samples. Compared to other common
interpolation techniques, Kriging can take the correlation function into
account. Yang et al. [36] adopted the Kriging method to assess the soil
properties at unsampled locations. However, Kriging is a deterministic
method to estimate the soil properties. In the last two decades, the
probabilistic random finite element method (RFEM) has attracted a lot
of attention. The random finite element method is utilized to char-
acterize the spatial variability of soil properties to assess the soil
properties of a site by Griffiths and Fenton [10,11]. In this paper, the
conditional random finite element method is utilized to generate
random fields while including known data at particular locations. The
implementation of conditional random fields is described in Section 3.
A conditional random field is employed to ensure that the simulated
random fields exactly match the soil properties at particular locations.
Mapping the conditional field to each mesh, the slope stability can be
determined by carrying out finite element analysis. This stability ana-
lysis is based on limited amount of information. So the stability index IFc
defined below is an estimation

=
−{I 1 failure

0 non failureFc (3)

Monte Carlo simulation can be used to estimate the conditional
probability of failure based on obtained site investigation data by
randomly simulating a sequence of realizations of conditional random
field.

∑≈p
n

I1
f

sim

n
Fc

sim
c (4)

Conditional random fields can make best use of limited site in-
vestigation data while still properly characterizing the spatial variation
of soil properties. The conditional simulations are able to increase the
confidence in a design’s success or failure (e.g., [26;27]). However,
inevitable uncertainty remains at locations which have not been ex-
amined. The slope design using sampled information may be

considerably over design, which is not cost-effective, or under design,
which may lead to potential failures and subsequent rehabilitation.
Inadequate characterization of the soil properties may contribute to two
types of hypothesis errors: (1) a Type I error where the slope is actually
unsafe but the slope stability analysis suggests that the slope is safe, or,
(2) a Type II error where the slope is actually safe but the slope stability
analysis suggests that the slope is unsafe. Hereafter, the type I and II
errors are called false safe and false unsafe, respectively.

The real stability index, IF and the estimated stability index, IFc can
be determined and used to estimate the probability of false safe or false
unsafe. If the “real” slope is unsafe, =I 1F , while the slope stability
analysis based on partial information suggested the slope is safe
( =I 0Fc ), this is a false safe. Then, the probability of making a false safe
is equal to the number of realizations which =I 0Fc divided by the total
number of realizations. The probability of false safe equals the com-
plement of estimated conditional probability of failure. Alternatively,
when the “real” slope is safe, =I 0F , the slope stability analysis based
on partial information suggested the slope is unsafe ( =I 1Fc ), this is a
false unsafe. The probability of making a false unsafe is equal to the
number of realizations which =I 1Fc divided by the total number of
realizations which is the estimated conditional probability of failure.
Therefore, the probabilities of false safe (pfalse safe) and false unsafe
(pfalse unsafe)can be estimated according to

= − =

= =

p p I

p p I

1 if 1

if 0
f F

f F

false safe

false unsafe

c

c (5)

Although risk inherent in the ground is inevitable, it can ideally be
identified and mitigated by way of incorporating geotechnical in-
vestigation. Normally, the risk is defined as the product of the prob-
ability of failure and the consequence. For geotechnical engineering
projects, false safe and false unsafe would result in different con-
sequences. Therefore, the consequences of these two types of errors
should be assessed individually. The risk, in this paper, is considered to
be a function of the costs, including the costs of site investigation, under
design and over design, associated with performing site investigations
of varying scope. A definition of risk of the particular slope is

= ⎧
⎨⎩

× + =
× + =

⎫
⎬⎭

= ⋯R
p C C I

p C C I
i m

if 1
if 0

1, 2,i
SI F

SI F

false safe false safe

false unsafe false unsafe (6)

where Ri is the risk of the ith slope, Cfalse safe is the consequence of
making a false safe which is the cost of slope failure, Cfalse unsafe is the
consequence of making a false unsafe which is the cost of over design,
CSI is the cost of the site investigation and m is the total number of
“real” slopes, i.e., unconditional initially simulated slopes. The expense
of site investigation is determined by the type and number of tests. False
safe is the worst outcome of slope stability analysis, where an unsafe
slope is deemed to be safe. This type of error can lead to slope failure.
The consequence of making a false unsafe means more funds being
spent on the project construction process to convert an already safe
slope to a deemed safe slope. False safe have more serious consequence
than false unsafe.

The risk associated with site investigation for a specific slope rea-
lization can be determined by Eq. (6). However, for a certain degree of
spatial variability, the mean risk should be estimated. When simulating
the “real” slope several times, it is possible to estimate the mean risk of
these samples. The mean risk can be estimated as follow

≈
∑ =μ

R
mR

i
m

i1
(7)

where μR is the mean risk.
Meanwhile, the mean probability of false safe and false unsafe can

be assessed as follow
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m
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false safe

1

false unsafe

1

(8)

where μpfalse safe
is the mean probability of false safe and μpfalse unsafe

is the
mean probability of false unsafe.

The above procedure can be used to quantify the risk of a geo-
technical site investigation with respect to a slope design. Although it is
intuitive to expect that the risk of a design will reduce as the site in-
vestigation scope increases (i.e., additional sampling), it is not known to
what degree the risk is reduced, nor whether other uncertainties have
an impact on this relationship. By comparing the mean risk of different
site investigation strategies, the optimal site investigation that yields a
slope design with lowest risk can be assessed, which is the main ob-
jective of this paper. Fig. 1 shows the flow chart of the proposed

approach.

3. Conditional random field simulation based on site investigation

3.1. Conditional random field simulation for stationary normal data

In this paper, the conditional random finite element method is used
to perform slope stability based on partial information. The measure-
ments are extracted at selected locations from the “real” slope. Then a
conditional random field is employed to ensure that the simulated
random fields match the soil properties at these particular locations.
This indicates that, in each realization of a conditional random field,
the soil properties at these particular locations are constrained, and the
soil properties at the other locations are random variables. To achieve
this, the Kriging method [22] is employed because it can be used to
estimate unobserved locations using known (measured) locations.

A conditional random field, which preserves the known values at

Fig. 1. Flow chart for calculating the mean risk of slope designs.
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the measurement locations, can be formed from three different fields by
Journel [20]

= + −X X X Xx x x x( ) ( ) ( ( ) ( ))c uc uc  (9)

where X x( )c is the conditional simulated random field, X x( )uc is the
unconditional random field, X x( ) is the best estimate of field by Kriging
based on measured values at known locations and X x( )uc is the best
estimate of field by Kriging based on unconditional simulated values at
the same measurement locations.

To accomplish the conditional simulation, the random field will be
separated into two parts spatially (1) xs, = ⋯s n1, 2, , s, being those
points at which measurements have been taken, and at which the
random field takes on deterministic values Xs, and (2) xp,

= ⋯ −p N n1, 2, , s, being those points at which the random field is still
random and at which we wish to simulate realizations of their possible
random values. That is, s the subscript will denote known values, the
subscript p will denote unknown values which are to simulated. N is
the total number of points in the field.

The best estimated properties at the known spatial locations, xs, are
equal to the value at the known locations, that is, =X Xx( )s s , while

=X Xx x( ) ( )uc s uc s . At each measurement point, xs, the conditional
random field becomes

=X Xx( )c s s (10)

which is the measured value, as desired.
The unconditional simulation can be produced based on the statis-

tics of the soil properties via several different algorithms, such as the
Karhunen-Loeve expansion (e.g., [29]), the Cholesky decomposition
(e.g., [18]) technique and the local average subdivision (LAS) (e.g.,
[7]). The LAS method is adopted in this study. The methodology has
been described in detail in other publications (e.g., [12]).

The Kriged field based on the measured values at unknown loca-
tions, X x( ) , is determined by

∑= + −
=

X μ β X μx( ) ( )p X
s

n

s s X
1

s


(11)

for, = ⋯ −p N n1, 2, , s,where μX is the unconditional field mean and
βs is a weighting coefficient to be discussed shortly.

Similarly, the Kriged field of the simulation, X x( )uc , is determined
by

∑= + −
=

X μ β X μx x( ) ( ( ) )uc p X
s

n

s uc s X
1

s


(12)

for = ⋯ −p N n1, 2, , s. The only substantial difference between X x( )
and X x( )uc is that the former is based on observed values, Xs, while the
latter is based on unconditional simulation values at the same locations.
The difference appearing in Eq. can be computed more efficiently and
directly as

∑− = −
=

X X β X Xx x x( ) ( ) ( ( ))p uc p
s

n

s s uc s
1

s
 

(13)

The weighting coefficients, βs, are determined from

= −Cβ b1 (14)

where β is the vector of weighting coefficients βs, and is the ×n ns s
matrix of covariances between the unconditional random field values at
the known points. The matrix C has components

=C Cov X Xx x[ ( ), ( )]jk uc j uc k (15)

for = ⋯j k n, 1, 2, , s. Finally, b is a vector of length ns containing the
covariances between the unconditional random field values at the
known points and the prediction point, X x( )uc η . It has components

=b Cov X Xx x[ ( ), ( )]s uc s uc p (16)

for = ⋯s n1, 2, , s.
Since C is dependent on the covariances between the known points,

it only needs to be inverted once and can be used repeatedly in Eq. (14)
to produce the vector of weights β for each of the −N ns best linear
unbiased estimates (Eq. (13)).

3.2. Conditional random field simulation for lognormal data

However Eq. (9) can only be used directly for normal data. If the
random variable is assumed normal distributed, both negative and
positive values are possible, which is not acceptable for non-negative
geotechnical parameters. To avoid negative values a non-Gaussian
distribution is desirable. Elishakoff et al. [4] and Chilès and Delfiner [3]
proposed a conditional simulation method for non-Gaussian fields by
transforming the actual data to Gaussian data.

Let Z x( ) be a lognormal distribution with mean μZ and standard
deviation σZ . The following steps described the transformation to a
Gaussian (normal) distribution

(1) Transfer the lognormal data into Gaussian data by =X Zx x( ) ln( ( )).

The associated statistics in normal space are = ⎛
⎝

+ ⎞
⎠

σ ln 1X
σ

μ
Z

Z

2

2 and

= −μ μ σlnX Z X
1
2

2 .
(2) Generate an unconditional random field X x( )uc with transferred

point statistics and correlation structure, and extract the values of
X x( )uc at the measurement locations.

(3) Calculate the difference between known data and values extracted
from unconditional random field −X Xx x( ) ( )uc .

(4) Do Kriging for the difference −X Xx x( ) ( )uc  .
(5) Generate conditional random field =X x( )c

+ −X X Xx x x( ) ( ( ) ( ))uc uc  .
(6) Transfer =Z x( ) expc

X x( )c .

The conditionally simulated process passes through the known data
and has the same mean and covariance with the unconditional

H

DH

Fig. 2. Finite element mesh.
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simulation.
For non-stationary conditional random field simulation, the above

method can still be used by removing the trend first (e.g., [2]), and then
transform non-stationary random field into stationary random field.

4. Example

In order to illustrate the proposed method, an undrained slope is
considered with profile shown in Fig. 2. The slope is inclined to the
horizontal at angle = °α 26.6 (2:1 slope), with height =H 10 m, and
depth ratio to a lower firm layer =D 2. The slope has soil unit weight

=γ or γ( ) 20.0 kN/msat
3. The undrained shear strength is assumed to be

lognormally distributed with the mean =μ 50 kPacu and standard de-
viation =σ 25 kPacu . The spatial correlation length is assumed to be
isotropic with =θ 10 mcu . A mesh size of ×0.5 m 0.5 m is chosen for the
example. =σ 25 kPacu . Based on the parameters given above, two
thousand RFEM simulations are performed and pf is found to be 0.21.
The CPU time runs about 10min on a X5675@3.07 GHz laptop for this
example.

To give a good approximation to the mean risk of slope designs for a
given degree of spatial variability, a sufficiently large number of sam-
ples should be chosen. Hogg and Tanis [14] suggest that the sample size
would have to be at least 30. For a well behaved (almost normal) dis-
tribution, ⩾m 30 yields a reasonably good approximation to the po-
pulation mean. For poorly behaved distributions, a larger sample size is
needed. In this paper 100 “real” slopes (i.e., =m 100) are simulated to
estimate the mean risk of slope designs. Two typical slopes are selected
from the 100 “real” slopes, one of them being unstable, and the other
stable. The strength reduction method is performed for these two par-
ticular slopes to show clearly the two types of errors.

For the unstable slope, if the properties of the whole slope are
“known” as shown in Fig. 3(a), the stability analysis suggests that the FS
is 0.86, which means the slope is unsafe. The failure mechanism can be
seen from Fig. 3(d). Fig. 3 depicts the variation of undrained shear
strength where the dark and light regions depict “strong” and “weak”
soils, respectively. To explore the subsurface soil properties 5 CPTs are
performed to the depth of 20.0m (i.e., to the bottom of the slope model)
from the natural ground surface. The relative locations of the CPTs are
plotted in Fig. 3(a). As Yang et al. [36] suggested the optimal sampling
should be conducted between slope toe and crest. Five columns of un-
drained shear strengths are obtained from every element along a ver-
tical boring as indicated. The conditional random field method using
Kriging is then used to estimate the undrained shear strengths of the
whole slope. Two thousand conditional simulations are carried out of
the conditional random field giving a probability of failure of about
0.96. The prediction of the slope stability based on the conditional si-
mulations can result in two outcomes; the slope is safe or is unsafe, i.e.,
the prediction is either correct or gives a false safe. A typical condi-
tional simulation which makes a correct prediction of the stability of
the slope is shown in Fig. 3(b) and (e). Fig. 3(c) and (f) indicate that the
slope stability analysis based on partial information suggests the slope
is safe while the slope is unsafe which makes a false safe. The prob-
ability of making a false safe is about 0.04 according to Eq. (5). Even
though the stability analysis results for these two conditional simula-
tions are opposite, the measurements at sample locations remain same
from simulation to simulate. Fig. 3(b) and (c) show the grey scale of the
estimated undrained shear strengths derived from Kriging with the
constraint that the undrained shear strengths between the red1 lines are
fixed and based on the virtual samples taken from the “real” slope in
Fig. 3(a).

For a stable slope as shown in Fig. 4(a) and (d), 5 CPTs are per-
formed to characterize the soil properties. Conditional simulation is

adopted to predict the undrained shear strengths at unsampled loca-
tions. The slope stability analysis will make a correct prediction in
Fig. 4(e) or a false unsafe in Fig. 4(f).

4.1. Calculation of risk of slope stability analysis

In order to perform risk analysis, it is necessary to assign con-
sequences representative of each of the component due to inadequate
information. In this study, only consider the costs for site investigation
tests, making a false safe and making a false unsafe.

The assumed costs for site investigation in this paper are adopted
from common industry rates in South Australia, as described by
Goldsworthy et al. [8], i.e., 1 CPT is assumed to cost $AUD 5000. It is
assumed the consequence of making a false safe cost $AUD 1,000,000
and the cost of making a false unsafe is $AUD 150,000.

4.2. Influence of number of cone penetration test on mean risk

In this subsection, the method is used to explore the optimal number
of site investigation tests for minimizing risk in the stability analysis of
slopes. Suppose site investigations have been conducted based on CPTs
to obtain the soil properties. Five different sampling schemes involving
from 1 CPT sounding to 5 are applied to 100 slopes to determine the
optimal site investigation strategy. The conditional random field is
employed to assess the reliability of slopes based on the obtained in-
formation. It can be seen from Fig. 5 that the risk would be very high
when inadequate site investigation information is used. The mean
probability of false safe and false unsafe of these 100 “real” slopes can
be calculated by Eq. (8). The mean probability of making either false
safe or false unsafe is decreased with additional CPTs as shown in
Figs. 6 and 7. The probabilities of false safe and false unsafe are sig-
nificantly reduced for the first 3 sampling. However, little benefit is
evident for the probabilities of false safe and false unsafe when the
fourth and fifth CPT is conducted.

Fig. 8 shows the influence of number of CPTs on the mean risk. Each
point on the plot is obtained using 100 “real” slopes. It can be seen from
Fig. 8 that as the number of CPTs increases, the mean risk of slope
stability analysis first decreases and then rises. Increasing site in-
vestigation expenditure at first causes to the mean risk noticeably re-
duce, reaching a minimum value when 3 tests are conducted. An in-
crease in site investigation expenditure from $AUD 5000 (1 sampling
location) to $AUD 15,000 (3 sampling locations) yields an expected
total cost saving of approximately $AUD 80,000. In this example, fur-
ther CPTs beyond the optimal value of 3 lead to designs with a higher
risk due to the increased cost of the site investigation.

5. Parametric studies

5.1. Influence of standard deviation on the mean risk

The previous results are based on a certain level of spatial correla-
tion and soil variability (i.e., =θ 10 mcu , =σ 25 kPacu and

=μ 50 kPacu ). In this subsection, the influence of σcu (i.e., =σcu 10 kPa,
20 kPa, 25 kPa and 50 kPa) on the mean risk is investigated. All other
statistics remain the same as described in previous section. Two thou-
sand simulations are used for most cases while twenty thousand si-
mulations are used for low standard deviations ( ⩽σ 20 kPacu ). When σcu
is 10 kPa, 20 kPa, 25 kPa and 50 kPa, the corresponding pf obtained by
unconditional simulations is <1 20, 000, 0.02, 0.21 and 0.735, respec-
tively. The influence of σcu on mean risk is shown in Fig. 9. It can be
seen from Fig. 9 that the mean risk first decreases and then increases as
the number of CPTs increases when =σcu 20 kPa, 25 kPa and 50 kPa.
There is an optimal site investigation scope, i.e., 3 CPTs as observed in
Fig. 8. However, when σcu is low (i.e., =σcu 10 kPa), the optimal site
investigation scheme is to conduct 1 CPT. This is because when the

1 For interpretation of color in Fig. 3, the reader is referred to the web version
of this article.
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degree of variability in soil properties is relatively low, only 1 CPT is
enough to characterize the slope. The probabilities of false safe and
false unsafe are largely independent of site investigation scope, re-
sulting in minimal testing being sufficient. It appears that the mean risk
linearly increases as the number of CPTs increases.

5.2. Influence of spatial correlation length on the mean risk

The influence of spatial correlation length on the mean risk is in-
vestigated by varying the spatial correlation length (i.e., =θcu 1m, 10m,
20m, 40m and 100m) but maintain all other parameters constant (i.e.,

=σ 25 kPacu and =μ 50 kPacu ). Two thousand simulations are used for

most cases while twenty thousand simulations are used for low spatial
correlation length ( =θ 1 mcu ). When θcu is 1 m, 10m, 20m, 40m and
100m the corresponding pf obtained by unconditional simulations is
<1 20, 000, 0.21, 0.25, 0.26 and 0.28. Figs. 10 and 11 show the effect of
spatial correlation length on the mean risk of slope designs. As shown in
Figs. 10 and 11, the mean risk increases at first and then decreases as
the spatial correlation length increases. A worst case spatial correlation
length of 20m is evident where the greatest mean risk occurs for all the
five site investigation scopes. The above results can be explained as
follows. The spatial correlation length is defined as the distance within
which points are significantly correlated. When the correlation length is
small, the field tends to be rough. At the lower limit, when θcu tends to

1st 4th 3rd 5th 2nd

(a)

(b)

(c)

(d)

(e) correct

(f) False safe

Fig. 3. The prediction of the unstable slope based on obtained measurements results in correct predictions of slope stability or false safe. (a) “Real” slope. (b) One
typical conditional simulation based on 5 CPTs. (c) Another typical conditional simulation based on 5 CPTs. (d) Slope stability based on knowing all properties
indicated that the slope is unstable (FS=0.86). (e) Slope stability based on the conditional simulation indicated that the slope is unstable which means that this is a
correct prediction. (f) Slope stability based on the conditional simulation indicated that the slope is safe which makes a false safe.

Fig. 4. The prediction of the stable slope based on obtained measurements results in correct predictions of slope stability or false unsafe. (a) “Real” slope. (b) One
typical conditional simulation based on 5 CPTs. (c) Another typical conditional simulation based on 5 CPTs. (d) Slope stability based on knowing all properties
indicated that the slope is safe (FS=1.42). (e) Slope stability based on the conditional simulation indicated that the slope is safe which means that this is a right
prediction. (f) Slope stability based on the conditional simulation indicated that the slope is failed which makes a false unsafe.
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zero, all points in the field become uncorrelated with each other, which
means that the random field is white noise (e.g., [11]). It implies that
two points arbitrarily close to one another will have independent va-
lues. The local average of lognormal undrained shear strength would
consist of an infinite number of independent values whose mean tends
to the median (a non-random constant value). Hence, only one sample
is sufficient to represent the undrained shear strength of the entire
slope. That is, the probability of making either false safe or false unsafe

will be zero based on any amount of information. Conversely, when the
correlation length becomes large, the field becomes smoother. The
random field becomes completely uniform but different from realiza-
tion to realization when θcu tends to infinity. Each realization is com-
posed of a single random value so that one sample is enough to predict
the soil properties of the whole field. In this case, the risk would be zero
on the basis of one sample. Therefore, the growth in mean risk is caused

1 2 3 4 5
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Fig. 5. The influence of number of CPTs on the risk of slope designs.

Fig. 6. Influence of number of CPTs on the mean probability of false safe.

Fig. 7. Influence of number of CPTs on the mean probability of false unsafe.

Fig. 8. Influence of number of CPTs on mean risk.

 

Fig. 9. Influence of standard deviation on mean risk.

Fig. 10. Influence of spatial correlation length on mean risk.
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by the increasing site investigation expenditure when =θcu 1m or 100m.
At intermediate spatial correlation lengths, there must be a worst case
scenario where the mean risks are at a maximum. For example, when

=θcu 20m, the mean risk of the slope design based on 3 sample locations
is less than that for designs based on 2 or 4 sampling tests.

5.3. Influence of the consequence of making a false safe on the mean risk

In previous discussions, it is assumed that consequences of making a
false safe for different levels of pf are the same (i.e., =Cfalse safe $AUD
1,000,000). In reality, the consequences of making a false safe are
different for different levels of pf . Baecher and Christian [2] reported a
probability-consequence chart which shows the corresponding con-
sequences for different levels of pf . In this chart, the total cost of failure
could reach $AUD 1 billion when pf is 0.001. If pf decreases by one
order of magnitude, the total cost of failure would increase one order of
magnitude. In this subsection, Cfalse safe for different pf is assumed to be
different. The costs of conducting 1 CPT and making a false unsafe
remain the same (i.e., =CSI $AUD 5000 and =Cfalse unsafe $AUD 150,000).
When pf is <1 20, 000, 0.02, 0.21, and 0.735, Cfalse safe is assumed to be
$AUD 10,000,000, $AUD 10,000,000, $AUD 1,000,000 and $AUD
285,000, respectively. Based on these assumptions on Cfalse safe, the re-
sults in Fig. 9 are replotted in Fig. 12. It can be seen from Fig. 12 that
the optimal number of CPTs is still 3 when =p 0.21f ( =σcu 25 kPa) and

=p 0.735f (50 kPa). When =p 0.21f ( =σcu 25 kPa), Cfalse safe is not
change. Therefore, the optimal number of CPTs is still 3. When

=p 0.735f ( =σcu 50 kPa), Cfalse safe is decreased from $AUD 1,000,000 to
$AUD 285,000. It is expected that the optimal number of CPTs would
be less than 3 due to the decrease of Cfalse safe. However, the third CPT
leads to a significantly reduction in probability of false safe. Therefore,
the expense of the third CPT is outweighed by risk reduction. The op-
timal number of CPTs is still 3. When =p 0.02f ( =σcu 20 kPa), Cfalse safe
increases tenfold from $AUD 1,000,000 to $AUD 10,000,000. As ex-
pected, the mean risk is decreased as the scope of the site investigation
is increased. This is because the cost of conducting additional CPT is
negligible in comparison to the consequence of false safe when the
probability of failure is low. This reinforces the belief that engineers
should invest in more thorough investigations if the consequence of
slope failure is significant. When <p 1 20, 000f ( =σcu 10 kPa), the op-
timal number of CPT is still 1. This is because false safe is unlikely to
occur for reasons discussed previously in Section 5.1.

The results shown in Fig. 10 assume that the values of Cfalse safe are
the same for different levels of pf . Fig. 10 can also be replotted by as-
signing different Cfalse safe for different levels of pf . However, the change
of pf is insignificant when θcu is increased from 10m to 100m. There-
fore, Cfalse safe remains the same and the results shown in Fig. 10 remain
the same.

6. Conclusion

As site investigations play a vital role in any geotechnical en-
gineering design, it is important that such investigations are adequately
planned to characterize the subsurface conditions. These results will
assist geotechnical engineers in planning a site investigation in a more
rational manner with knowledge of the associated risks. Based on the
results obtained in this paper, the following conclusions can be drawn:

1. For a certain level of spatial variability, the risk of slope design is
reduced significantly by increased site investigation tests. However,
there appears to be an optimal number of site investigation tests,
where the expected total cost of the slope design is a minimum.

2. Conditional random field is employed to assess the soil properties at
unsampled location. The conditional simulations make better use of
the measurements and decreasing the simulation variance of the
random fields.

3. The influence of spatial correlation length on the mean risk asso-
ciated with site investigation is investigated. It is shown that there is
a worst case spatial correlation length where the mean risk of slope
designs are maximum. At the limit values of spatial correlation
length, only one CPT sounding is sufficient to predict the stability of
the slopes.

4. The influence of the standard deviation on the mean risk is also
investigated. The results show that increased site investigation ex-
penditure has a greater influence when the soil standard deviation is
large. When the degree of variability for soil properties is relatively
small, less information is needed to characterize the slope.

5. The influence of consequence of making a false safe on the mean risk
is also investigated. The results show that more thorough site in-
vestigations are needed when the consequence of making a false safe
is high.

In this paper, it is assumed that the mean, standard deviation and
spatial correlation length of soil properties are known. Based on the
assumptions, this paper proposes a framework which can be used to
find the optimal site investigation scope. Parametric studies of the op-
timal site investigation scope for different degrees of spatial variability
have been conducted. In practice, if engineers do not know the covar-
iance function, the standard deviation or the spatial correlation length
of soil properties, they can refer to the literature or similar projects to
determine these statistics. Then, the optimal site investigation scope
can be determined based on the estimated statistics and the parametric
studies performed in this study.

Fig. 11. Influence of spatial correlation length on mean risk based on 3 CPTs.

Fig. 12. Influence of consequence of making a false safe error on mean risk.
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