
Probabilistic stability analyses of layered excavated slopes

D. ZHU*, D. V. GRIFFITHS{{ and G. A. FENTON§

The random finite-element method (RFEM) is employed to study the effect of vertical spatial soil
variability on the stability of layered excavated slopes. Particular emphasis of the paper is on the critical
or ‘worst-case’ vertical spatial correlation length, at which the probability of slope failure reaches a
maximum. The RFEM results indicate that layered slopes with a relatively low mean factor of safety or
a relatively high coefficient of variation of soil strength are most likely to display the ‘worst-case’
phenomenon. The ‘worst-case’ phenomenon is explained by observing the failure mechanisms in
layered soils where the critical spatial correlation length optimises the number of horizontal paths of
weaker soil available for the mechanism to pass through.
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NOTATION
cu undrained shear strength

cu,FS=1 characteristic value of the undrained strength that would
result in FS= 1

D depth ratio
FS factor of safety
FS mean factor of safety
H slope height
pf probability of failure

pf(max) maximum probability of failure
vcu coefficient of variation for cu
β slope angle
γ saturated unit weight

Θy dimensionless vertical spatial correlation length
θx horizontal spatial correlation length
θy vertical spatial correlation length
μcu mean of cu
σcu standard deviation of cu
Φ(·) standard normal cumulative distribution function
ϕu total stress friction angle (= 0)

INTRODUCTION
Traditionally, slope stability is assessed by deterministic
approaches leading to a factor of safety where the soil prop-
erties are often assumed to be constant based on character-
istic values. It has long been recognised, however, that soil
properties exhibit spatial variability and that the classical
factor of safety is not a consistent way of measuring risk,
since it includes no concept of soil strength variability – for
example, when comparing two slopes, the one with the
higher factor of safety may also have a higher probability
of failure (e.g. Lacasse et al., 2013). Accordingly, numerous
probabilistic slope stability analysis methods incor-
porating soil variability have been developed (e.g. Tang
et al., 1976; Whitman, 1984; Paice & Griffiths, 1997;

Hassan & Wolff, 1999; Griffiths & Fenton, 2000, 2004).
Among these approaches, the random finite-element method
(RFEM) (Griffiths & Fenton, 1993; Fenton & Griffiths,
1993, 2008) has been proved to be one of the most robust and
effective approaches.

In this paper, the RFEM program rslope2d has been
modified and applied to the stability analysis of a slope
excavated in layered anisotropic soil in which the horizontal
spatial correlation length is significantly higher than that in
the vertical direction (e.g. Phoon & Kulhawy, 1999). As a
special case, only spatial variability in the vertical direction
is considered in this paper, with the horizontal spatial cor-
relation length assumed as infinite. This assumption rep-
resents a limiting case of layered soil and has previously
been considered for braced excavations and slopes (Griffiths
et al., 2009; Luo et al., 2012; Allahverdizadeh, 2015;
Allahverdizadeh et al., 2015a). For conservative reliability-
based design, the focus of this study will be on the influence
of the vertical spatial correlation length on the probability
of failure, and particularly the ‘worst-case’ value that might
lead to a maximum probability of failure (or minimum
reliability).

INPUT PARAMETERS
Figure 1 shows a typical profile of the test slope considered,
with height H=10 m, depth ratio D=2, total undrained
friction angle ϕu= 0 and saturated unit weight γ=20 kN/m3.
Four slope angles β = 26.6, 45, 60 and 90° were considered
with this profile. The undrained shear strength cu was assumed
to be a log-normal random variable in the vertical direction
defined by a mean μcu , a standard deviation σcu and a spatial
correlation length θy. A convenient measure of variability is
given by the coefficient of variation vcu ¼ σcu=μcu and it has
been suggested that vcu for undrained strength typically lies in
the range 0�1 , vcu , 0�5 (e.g. Lee et al., 1983).

The spatial correlation length is a measure of the distance
over which properties tend to be correlated. A high spatial
correlation length implies gradually varying, while a small
spatial correlation length implies rapidly varying properties.
In the current study, the vertical spatial correlation length
θy has been varied systematically, while the spatial correlation
length in the horizontal direction is fixed and infinite
(i.e. θx=∞; there is no change in soil properties in the
horizontal direction). Figure 2 shows two typical realisations
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of random fields corresponding to low and high vertical
spatial correlation lengths (θy=0·1 and θy=1000 m) for a
slope with β=45°. Light and dark layers mean low and high
values of undrained shear strength, respectively. It can be
observed from Fig. 2 that high θy gives a more slowly varying
cu across themesh. A non-dimensional vertical spatial correla-
tion length given by Θy= θy/H is adopted, and the following
values have been chosen for the current parametric study

Θy ¼ 0�01; 0�1; 0�2; 0�5; 1�0; 2�0; 5�0; 10�0; 100�0

RFEM RESULTS
In conventional slope reliability analysis, the single random
variable (SRV) approach has been widely used due to its
simplicity. The SRV approach assumes a uniform isotropic
soil with randomised strength parameters (i.e. θx= θy=∞).
The probability of failure in such cases can be derived
analytically as shown in Fig. 4 in Griffiths & Fenton (2004)
based on the equation

pf ¼ Φ
ln 1þ v2cu

� �
� 2 ln FS

� �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �r
2
664

3
775 ð1Þ

where FS is defined as the mean factor of safety – that is, the
factor of safety of the slope assuming a uniform soil with its
strength set equal to μcu.

The SRV approach and equation (1) have, however, been
shown to be potentially unconservative (e.g. Griffiths et al.,
2007; Allahverdizadeh et al., 2015b; Zhu et al., 2019) where
a maximum and conservative probability of failure have
been identified at intermediate critical or ‘worst-case’ spatial
correlation lengths. In the current study, to systematically
search for the critical vertical spatial correlation length in
the reliability analysis of anisotropic layered excavated
slopes, the test slope with β=26·6° shown in Fig. 1 was
selected. For this test slope, traditional deterministic appro-
aches (e.g. stability chart of Taylor, 1937) give cu,FS=1/(γH) =
0·17, where cu,FS=1 is the characteristic value of the
undrained shear strength that would result in a factor of
safety of FS= 1. Due to the linear relationship between
the factor of safety and the undrained shear strength in a
uniform slope, the mean factor of safety FS is given by

FS ¼ μcu= γHð Þ
0�17 ð2Þ

Following RFEM parametric studies, Fig. 3 shows the
relationship between Θy and pf for three different mean
factors of safety using equation (2) with β=26·6° and vcu ¼
0�5. It can be observed from Fig. 3 that there exists a
pronounced worst-case scenario occurring at about Θy=0·2
for FS ¼ 1�2. For higher values of FS, the value of Θy
corresponding to the maximum pf increases, but the
maximum also becomes less pronounced. For the case of
FS ¼ 1�4, the maximum is barely noticeable. In summary,
the results shown in Fig. 3 indicate that for layered excavated
slopes with vcu ¼ 0�5, the SRV approach and equation (1)
give unconservative solutions if the mean factor of safety is
relatively low (i.e. FS , 1�4). As might be expected, as Θy
increases, the RFEM outcomes converge asymptotically
from above for equation (1) solutions.

Figure 4 shows the effect of Θy on pf for three different
coefficients of variation with β=26·6° and FS ¼ 1�3. The
result for the case of vcu ¼ 0�5 corresponds to the middle
plot in Fig. 3. It can be observed that, with the decrease of vcu ,
the ‘worst-case’ phenomenon gets less noticeable. For the case
of vcu ¼ 0�3, the analytical solution is greater than all RFEM
results and may be considered conservative. Figure 4 indicates
that, for layered excavated slopes with FS ¼ 1�3, the SRV
approach may give unconservative solutions, but only for a
relatively high coefficient of variation (vcu . 0�3).
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Fig. 1. Slope profile and deterministic parameters for the test
slope
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Fig. 2. Effect of vertical spatial correlation length in RFEM
analysis of layered excavated slopes: (a) θy=0·1 m and
(b) θy=1000 m
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Fig. 3. Influence of Θy on pf with different mean factors of safety
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Figure 5 shows the effect of Θy on pf for four different
slope angles with FS ¼ 1�3 and vcu ¼ 0�5. Similarly, the
result for the case of β=26·6° is the same as those with circle
symbols in Figs 3 and 4. It can be observed that the critical
Θy occurs at the same position for all cases; however, the
β=60° result gives the most obvious maxima in pf. Figure 6
shows the effect of β on the maximum pf for these selected
slope angles. Apparently, for the horizontally layered soils
under consideration, the 60° slope allows more paths
(deep and shallow) to failure over a suite of Monte-Carlo
simulations than the 45° or even the 90° case. An advantage
of stability analysis by RFEM is its inherent ability to ‘seek
out’ the critical failure mechanism. Taylor (1948) indicated
that 53° slopes represented the transition between deep and
shallow critical failure mechanism for uniform undrained
slopes. It seems logical that in random-layered slopes,
this transition would occur at steeper slope angles (e.g. van
den Eijnden & Hicks, 2018), because to go deep, the critical
failure mechanism has to cut through layers of varied
strength in the series (see Fig. 7). Since the probability of

failure is defined as the proportion of RFEM analyses which
failed, more paths to failure would result in higher pf. As
shown in Fig. 5, when the vertical spatial correlation length
increases towards infinity (Θy!∞), the RFEM results for
all cases approach the analytical solution of pf = 0·375 from
equation (1). This is expected, because the probability of
failure given by equation (1) as pf ¼ f FS;vcu

� �
does not

depend on the slope angle β.
An explanation of the ‘worst-case’ phenomenon might lie

in an observation of the failure mechanisms for layered
excavated slopes shown in Fig. 7. The figure shows three
typical failure simulations (shallow, toe and deep failure
mechanisms) from the Monte-Carlo suite corresponding to
the ‘worst-case’ properties of Θy=0·2, β=26·6°, vcu ¼ 0�5
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Fig. 4. Influence of Θy on pf with different coefficients of
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Fig. 7. Typical failure mechanisms for a slope with β=26·6°,
vcu ¼ 0�5, FS ¼ 1�2 and Θy=0·2: (a) shallow failure mechanism;
(b) toe failure mechanism and (c) deep failure mechanism

Probabilistic stability analyses of layered excavated slopes 3

Géotechnique Letters 2019.9:1-4.



and FS ¼ 1�2. The failure mechanisms follow the path of
least resistance through the slope and involve a quite com-
plicated integral of soil strengths. On the uphill side, the
mechanism has to cut in series through multiple layers of
varying strength, while on the downhill side, the mechanism
is attracted to a weaker layer, and runs parallel to the stra-
tification. The ‘worst-case’ correlation length appears to
offer more paths for the mechanism to follow than higher or
lower values, and hence delivers a higher probability of
failure. In the realm of probabilistic geotechnical analysis,
the ‘worst-case’ correlation length is an interesting topic of
ongoing investigations (e.g. Zhu et al., 2019).

CONCLUSION
This paper investigated the reliability of layered excavated
slopes by the RFEM. Parametric studies used varied vertical
spatial correlation length while the horizontal spatial
correlation length was fixed to infinity. The emphasis of
the paper is to investigate the ‘worst-case’ vertical spatial
correlation length leading to the maximum probability of
failure (or minimum reliability). Similar overall conclusions
were reported by Zhu et al. (2019) for reliability analysis of
slopes with isotropic spatial correlation lengths. The results
in this paper show that the ‘worst-case’ phenomenon is most
obvious when the FS is relatively low (e.g. FS , 1�4) and the
vcu is relatively high (e.g. vcu . 0�3). Results also indicate a
‘worst-case’ slope angle of around 60° (with all other
parameters held constant), leading to higher probabilities
of failure than flatter or even steeper slopes.

RANDOM FINITE-ELEMENT PROGRAMS
The source code for the RFEM programs covering a range
of geotechnical applications can be downloaded from
DOEMI (n.d.).
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