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Abstract: This technical note used the random finite-element method (RFEM) to investigate the influence of soil strength variability on the
limit load of a shallow passive trapdoor embedded in cohesive soil. The mean undrained shear strength was held constant while the coefficient
of variation and spatial correlation length were varied systematically. For trapdoors against soils with low values of the coefficient of variation,
the mean limit load agreed well with the results from a uniform deterministic analysis. For higher values of the coefficient of variation, the
mean limit load decreased. By interpreting the Monte Carlo simulations in a probabilistic context, the probability of failure was assessed as a
function of the factor of safety based on the mean and the spatial variability of the soil. It was found, for example, that a factor of safety of 2.5
is required to avoid the probability of failure exceeding 5% for soils with strength variability within typical ranges. DOI: 10.1061/(ASCE)
GT.1943-5606.0002051. © 2019 American Society of Civil Engineers.
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Introduction

The stability of a trapdoor, originally studied by Terzaghi (1936),
has become an important benchmark solution in theoretical soil me-
chanics. This problem has two kinds of displacement pattern, de-
pending on whether the movement of the trapdoor is upward
(passive) or downward (active). Passive failure of a trapdoor might
correspond to the uplift problem of a plate anchor (e.g., Merifield
et al. 2001), whereas active failure might correspond to gravita-
tional flow of a granular material, which has been used in the
design of tunnels. The trapdoor problem has received considerable
attention deterministically (e.g., Koutsabeloulis and Griffiths 1989;
Sloan et al. 1990; Smith 1998, 2012; Martin 2009; Keawsawasvong
and Ukritchon 2017). Natural soils usually exhibit spatial variabil-
ity, with the properties varying from point to point. This technical
note investigated the influence of soil strength variability on the
limit load of a rough rigid strip trapdoor embedded in an undrained

clay by the random finite-element method (RFEM) (Griffiths and
Fenton 1993, 2007). This advanced numerical method combines
elastic-plastic finite-element (FE) methodologies (e.g., Smith and
Griffiths 2004) with random field theory in a Monte Carlo frame-
work. The local averaging subdivision (LAS) method (Fenton and
Vanmarcke 1990) was used to generate the random fields, because
this method is able to model spatial variability while properly
accounting for local averaging over each finite element. The un-
drained shear strength cu was assumed to be lognormally distrib-
uted, with the parameters given in Table 1.

With the purpose of nondimensionalizing the input parameters,
the variability of cu can be expressed by the coefficient of variation
vcu ¼ σcu=μcu , which is a convenient measure of dispersion relative
to the mean. The parameter θcu is a dimensional spatial correlation
length, which governs the distance over which properties are essen-
tially similar, i.e., small correlation lengths lead to rapid spatial
variability, whereas large correlation lengths lead to slow spatial
variability. For the random field modeling, a dimensionless and
isotropic spatial correlation length Θcu ¼ θcu=B was used, where
B is the width of the strip trapdoor.

It has been recommended (e.g., Lee et al. 1983; Phoon and
Kulhawy 1999) that typical values of the coefficient of variation
for cu are between 0.1 and 0.5. The spatial correlation length how-
ever, is rarely reported and may show anisotropy. Although the
RFEM methodology has the ability to model anisotropy, for sim-
plicity, the assumption of isotropy is made throughout this study.
Site-specific refinement relating to anisotropy may be a topic for
future studies.

In this study, μcu was fixed at a value of 100 kN=m2,
and the other two input parameters vcu and Θcu were varied
systematically.

Deterministic Analysis

The stability analysis of a shallow passive trapdoor is performed
assuming the soil is a saturated undrained clay (ϕu ¼ 0) with an
elastic-perfectly plastic Tresca failure criterion. The viscoplastic
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finite-element method is used (e.g., Smith and Griffiths 2004). The
initial total stresses are assumed to be essentially hydrostatic, hence
they have no influence on the strength. Furthermore, the variability
of the unit weight is small relative to the undrained strength
(e.g., Lee et al. 1983) and is often considered to be a deterministic
variable. For simplicity, this study assumed the soil to be weight-
less (γ ¼ 0), with no surcharge pressure acting on the soil surface.
Thus the behavior of a trapdoor is affected by undrained shear
strength (cu), Young’s modulus (E), and Poisson’s ratio (ν).
The elastic parameters E and ν affect the calculated displacement
prior to collapse (e.g., Griffiths et al. 2002), but the limit loads of
the trapdoor depend mainly on soil strength parameter cu.
Although the RFEM program can model random distributions
of all three parameters, only the undrained shear strength was con-
sidered to be random in this study, whereas the Young’s modulus
and Poisson’s ratio were set to E ¼ 105 kN=m2 and ν ¼ 0.3,
respectively.

This study used a typical two-dimensional FE mesh consisting
of 1,200 eight-noded square elements, with 60 columns and 20
rows (Fig. 1). The side length of each element was 0.05 m
and the width of the strip trapdoor B was 1 m, which occupied
20 elements. The height of soil above the trapdoor, H, was as-
sumed to be equal to B, so with H=B ¼ 1 the trapdoor was con-
sidered to be shallow (i.e., H=B ≤ 2) (e.g., Sloan et al. 1990;
Martin 2009). The trapdoor was assumed to be rigid and rough,
and displacement control was employed. The trapdoor was incre-
mentally displaced vertically into the soil, whereas the horizontal
movement of the nodes which represent the trapdoor were fixed at
zero. After each increment, the average vertical stress σy in the
row of Gauss points just above the displaced nodes was calcu-
lated. Collapse of the trapdoor was said to have occurred when
the average σy became essentially constant. Finally, the limit load
was given by

Fp ¼ σyB ð1Þ

Martin (2009) proposed a slip-line solution of the shallow
trapdoor stability problem. For passive failure (Fig. 1), Martin’s
analytical solution is given by

Fp=B ¼ Nccu ð2Þ

where Nc = dimensionless stability factor, which is proportional to
the cover ratio H=B, and is given by

Nc ¼ 1.956H=B ð3Þ

For small cover ratios, Davis (1968) and Gunn (1980) derived
an upper bound Nc ¼ 2H=B by the vertical slip mechanism and a
three-parameter rigid block mechanism, respectively, whereas
Sloan et al. (1990) and Merifield et al. (2001) obtained quite close
bounds on the solution in the form of charts using finite-element
limit analysis (FELA). The slip-line solution of Martin (2009)
was later compared favorably with FELA solutions of Martin
and Randolph (2006) and Makrodimopoulos and Martin (2007)
for cover ratios H=B ≤ 1.3 and was used as the benchmark
solution in this study. For cover ratioH=B ¼ 1 and undrained shear
strength cu ¼ 100 kN=m2, Martin’s analytical solution [Eq. (3)]
gives the limit load for passive failure as Fp ¼ NccuB ¼
ð1.956Þð1Þð100Þð1Þ ¼ 195.6 kN=m.

The results of deterministic analysis by the finite-element
method are shown in Fig. 2, giving a limit load of about
191.1 kN=m, which is 2.3% lower than Martin’s analytical solution
of Fp ¼ 195.6 kN=m. The slightly lower values may be due to
mesh coarseness, especially at the trapdoor edge, and may also
be due to the measurement of stress at the first row of Gauss points,
which are slightly above the actual trapdoor depth. Table 2 com-
pares Martin’s analytical solution with the finite-element analysis
using 30 × 10, 60 × 20, and 120 × 40 elements. As the number of
elements increased, the difference between the FE and analytical
solutions decreased slightly (Table 2), indicating that the mesh
in Fig. 1 represents a reasonable compromise between accuracy
and computational efficiency. In the discussion that follows, and
for consistency, the mean limit load is standardized by the deter-
ministic value from FE analysis. The influence of this slightly lower

Table 1. Undrained shear strength properties

Statistical property Symbol Unit

Mean μcu Stress
Standard deviation σcu Stress

Spatial correlation length θcu Length

Fig. 1. Mesh used in probabilistic stability analysis of a shallow pas-
sive trapdoor.

Fig. 2. Deterministic stability analysis of the trapdoor.

Table 2. Limit load by finite-element and Martin’s analytical solutions
(kN=m)

Number of elements FE solution Martin’s solution

30 × 10 190.2 195.6
60 × 20 191.1
120 × 40 191.9

© ASCE 06019003-2 J. Geotech. Geoenviron. Eng.
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prediction is relatively unimportant, and in this study the determin-
istic limit load is referred to as Fpd

, that is, Fpd
¼ 191.1 kN=m.

Brief Description of RFEM

The random undrained shear strength was obtained via the LAS
approach using the following relationship

cui ¼ expðμln cu þ σln cugiÞ ð4Þ

where cui = undrained shear strength allocated to the ith element;
gi = local average of standard normal random field g over the region
of the ith element; and μln cu and σln cu = mean and standard devi-
ation of ln cu, respectively. Realizations of the local averages gi
were generated in a top-down fashion (Fig. 3).

In the context of a Monte Carlo analysis, each realization of an
RFEM analysis of the problem in Fig. 1 involves generation of the
cu random field and the succeeding FE analysis of the trapdoor
stability. In each realization, the underlying random field properties
vcu and Θcu are the same, however, the spatial pattern of cu over
the region of the FE mesh is quite different, leading each time to a
different value of the trapdoor limit load. Following each suite of
1,000 Monte-Carlo simulations, the calculated limit loads were
subjected to statistical analysis.

Results and Discussions

Parametric Analyses

Parametric analyses were carried out by adopting the mesh in Fig. 1,
with the following input values:

Θcu ¼ 0.01; 0.1; 0.2; 0.5; 1.0; 2.0; 5.0; and 10.0

vcu ¼ 0.1; 0.3; 0.5; 0.75; 1.0; and 1.5

For different parametric combinations of Θcu and vcu , the mean
and standard deviation of the trapdoor limit load were calculated
following 1,000 Monte-Carlo simulations.

Fig. 4 shows how the mean limit load, normalized by the deter-
ministic value from FE analysis, changes with Θcu and vcu . As
might be expected, for low values of vcu , the mean limit load
μFp

tended to the deterministic value. As the value of vcu increased,
the mean limit load decreased, and this phenomenon is particularly
obvious for a spatial correlation length of Θcu ≈ 0.1. For example,
for a highly variable soil with Θcu ¼ 0.1 and vcu ¼ 1.5, the
mean limit load decreased to about 50% of the deterministic value
[Fig. 4(a)]. A minimum mean limit load or worst case was reached
when Θcu ≈ 0.1 [Fig. 4(b)]. At the next lower value of Θcu , μFp

started to increase for all values of vcu . As Θcu → 0, local averag-
ing causes the random field of shear strength to be essentially uni-
form, with a value set at the median of the lognormal distribution.

Fig. 3. Flow chart for generating the local averages gi.

Fig. 4. Estimated mean limit load as a function of undrained shear
strength statistic: (a) vcu ; and (b) Θcu with H=B ¼ 1.

© ASCE 06019003-3 J. Geotech. Geoenviron. Eng.
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Fig. 5 shows two representative deformed meshes at failure
above the trapdoor with parametric combinations indicated in
the figure caption. The deformed mesh is shaded, with dark and
light regions indicating higher and lower soil strengths, respec-
tively. Due to the spatial variability of the soil, the failure mecha-
nism is of course not symmetrical.

Probabilistic Interpretation

For practical applications, it is interesting to predict the probability
of design failure. Failure is defined here to have occurred if the
calculated limit load is less than the deterministic solution based
on the mean value of cu, reduced by an appropriate factor of safety
FS, that is

Design failure if Fp < Fpd
=FS ð5Þ

The probability of design failure is defined as the probability
that the calculated limit load is less than the factored deterministic
value

pf ¼ P½Fp < Fpd
=FS� ð6Þ

Fig. 6 can be used to choose a required factor of safety to
satisfy the desired probability of failure. For example, if a target
probability of failure no greater than 5% is desired for an un-
drained clay with vcu ¼ 0.1 [e.g., a lower end of the recommended
range from Lee et al. (1983)], a factor of safety of at least FS ¼
1.2 is required [Fig. 6(a)]. For higher values of vcu ¼ 0.3 or
vcu ¼ 0.5, the required factor of safety needs to be at least 1.7 or
2.5, respectively [Fig. 6(c)]. The choice of pf for design projects is
entirely project-dependent and is beyond the scope of this techni-
cal note. The choice of pf ¼ 5% is arbitrary in order to show how
the methodology can make a link between a probability of failure
and a factor of safety. A very similar process is applicable for other
values of pf .

Fig. 5. Two typical deformed meshes at failure with (a) vcu ¼ 0.75 and
Θcu ¼ 0.1; and (b) vcu ¼ 0.75 and Θcu ¼ 0.2.

Fig. 6. Probability of design failure as a function of Θcu for different
factors of safety with H=B ¼ 1 and (a) vcu ¼ 0.1; (b) vcu ¼ 0.3; and
(c) vcu ¼ 0.5.
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Influence of Trapdoor Cover Ratio

The previous discussion related to a trapdoor with a cover ratio
of H=B ¼ 1; this subsection considers a shallower trapdoor
with H=B ¼ 0.5. For this value of the cover ratio, and with
other parameters the same as before, the limit load for passive
failure by Martin’s slip-line solution is Fp ¼ NccuB ¼
ð1.956Þð0.5Þð100Þð1Þ ¼ 97.8 kN=m. The deterministic FE result
is Fp ¼ 94.6 kN=m, which is 3.3% lower than Martin’s proposed
analytical solution. In this subsection, the deterministic limit load
was fixed at Fpd

¼ 94.6 kN=m .
Fig. 7 shows the mean limit load, normalized by the determin-

istic value from FE analysis, plotted against Θcu with vcu ¼ 0.1,
0.3, and 0.5. For H=B ¼ 0.5, the minimum mean limit load was
also reached when Θcu ≈ 0.1. Comparison of Figs. 6 and 8 indi-
cates that the minimum factors of safety needed to achieve a target
probability of failure no greater than 5% for different values of
vcu is essentially unchanged from the results observed in the
H=B ¼ 1 case.

Concluding Remarks

The following conclusions can be made:
1. The mean limit load for a shallow passive trapdoor embedded in

a spatially varying undrained clay is always less than the deter-
ministic value calculated using the mean shear strength. This is
due to the possibility that low strengths may be generated above
the trapdoor and the failure mechanism is attracted toward the
weak elements. This important observation confirms that low
strengths dominate computed limit loads.

2. A minimum mean limit load or worst case is observed for higher
values of vcu when the spatial correlation length is approxi-
mately Θcu ≈ 0.1. It is thought that this spatial correlation
length facilitates the development of failure paths above the
trapdoor more readily than higher or lower values of Θcu.

3. The RFEM analyses enabled the probability of failure to be
compared with the design factor of safety based on the mean
strength for different Θcu and vcu. For example, the results

Fig. 7. Estimated mean limit load as a function of Θcu with
H=B ¼ 0.5.

Fig. 8. Probability of design failure as a function of Θcu for different
factors of safety with H=B ¼ 0.5 and (a) vcu ¼ 0.1; (b) vcu ¼ 0.3; and
(c) vcu ¼ 0.5.

© ASCE 06019003-5 J. Geotech. Geoenviron. Eng.
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showed that the required factor of safety needs to be at least 2.5
to avoid the probability of design failure exceeding 5% for soils
with vcu ≤ 0.5.
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