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Abstract: The bearing capacity of square and/or rectangular footings in geotechnical foundation designs traditionally is determined based on
experimental observations and/or deterministic analysis assuming uniform soil profiles. However, soils are spatially varying, and this spatial
variability can significantly affect the bearing capacity of the foundation soils. Probability-based design methods can address this problem
explicitly. However, a full three-dimensional (3D) probabilistic simulation, such as that involving the random finite-element method, gen-
erally is prohibitive, because it involves numerous Monte Carlo runs of a complicated nonlinear elastoplastic algorithm. This paper developed
and validated an approximate analytical method based on local averaging theory and geometric averages of soil properties directly under the
footing. It was found that the theoretical prediction of the first two moments of a square footing bearing capacity agrees very well with crude
Monte Carlo simulation. The analytical prediction of the probability of a design failure was validated through simulation and can be used
directly in reliability-based designs against bearing failure. DOI: 10.1061/(ASCE)GT.1943-5606.0002538. © 2021 American Society of
Civil Engineers.
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Introduction

Geotechnical engineers routinely use the bearing capacity equation
(Terzaghi 1943) to estimate the limit load that a foundation soil can
sustain just before classical shear failure. For weightless soils
(conservative), the bearing capacity of surface footings has the fol-
lowing form:

qf ¼ sc × cu × Nc ð1Þ

where qf = ultimate bearing stress; cu = undrained shear strength of
soil; Nc = bearing capacity factor; and sc = shape factor.

An exact solution for the bearing capacity factor of a footing on
a purely cohesive soil is Nc ¼ 2þ π ≈ 5.14 (Prandtl 1920, 1921).
For a strip footing, sc ¼ 1.0, whereas the following empirical ex-
pression for sc commonly is used to evaluate the bearing capacity
of footings with a finite length (Meyerhof 1951; Skempton 1951;
Salgado et al. 2004):

sc ¼ 1þ 0.2ðB=LÞ ð2Þ

where B = footing width; and L = footing length. For a square foot-
ing, sc ¼ 1.20. This paper focuses on square footings founded on a
purely cohesive weightless soil.

The aforementioned procedure for calculating the bearing capac-
ity of a square footing is based on the assumption that the soil on
which the footing sits is uniform and characterized by a single soil
property value. However, it is well known that soil properties are
spatially variable and that this spatial variability (i.e., characterized
by a so-called scale of fluctuation) influences soil behavior and
the interaction between soils and structures (e.g., Nobahar 2003;
Stuedlein et al. 2012; Li et al. 2014, 2015a, 2016a; Al-Bittar
et al. 2018). Therefore, the statistics (e.g., mean and variance)
of qf change as a function of the variability in cu. This raises the
question of the reliability of qf , and this reliability issue can be re-
solved quantitatively by considering explicitly the spatial variability
involved.

In view of the nature of spatial variability, no plane strain sol-
ution [i.e., for a two-dimensional (2D) strip footing] exists that can
be corrected simply for use in three-dimensions (e.g., a square foot-
ing). Despite soil spatial variability being naturally three-dimensional
(3D) and the implication this has for footing bearing capacity, full
three-dimensional probabilistic (random field) analyses of bearing
capacity for the footing stability problem are surprisingly scarce.
Recently, there have been a few first attempts toward the real three
dimensional problem, either by trying to link with plane strain so-
lutions or by using directly a full 3D analysis method. For example,
Al-Bittar (2012) carried out a probabilistic analysis of a shallow
foundation resting on a 3D random soil using a metamodel based
on sparse polynomial chaos expansion combined with global sen-
sitivity analysis (Al-Bittar and Soubra 2014a). Simoes et al. (2014)
examined how a plane strain solution assuming no variation of soil
properties in the third dimension can be related to the real strip
footing resting on soils that vary in all three directions. In that case,
no shape factor was needed, because they still considered the
strip footing problem (i.e., the shapes were the same). Kawa et al.
(2016) reported bearing capacity analyses of square footings using
an overly simplified one-dimensional (1D) representation of soil
property variability in the vertical direction. Kawa and Puła (2019)
investigated a similar square footing founded on soils that varied
spatially in three dimensions using a direct three-dimensional
finite-difference analysis, without addressing the computational
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efficiency issue. Chwała (2019) proposed a kinematics-based ap-
proach to estimating the random bearing capacity of square and
rectangular foundations, based on previous 2D studies (Puła and
Chwała 2015, 2018). Li et al. (2020) proposed a way to cope with
this 3D complexity by modifying the shape factor defined in
Eq. (1), based on 3D analyses of both strip and square footings
for various site variability conditions, to ensure a consistent reli-
ability of the bearing capacity evaluation. However, this treatment
sometimes could be misleading, due to a modification of the shape
factor implying a change of the foundation shape, whereas it ac-
tually only involves the spatial variability of cu in Eq. (1). Apart
from this confusion, the analyses needed to arrive at a reasonable
value of sc that can be used directly in Eq. (1) are computationally
costly due to the involvement of complicated 3D nonlinear elasto-
plastic analyses. Some 3D investigations of deep foundations are
available (Vahdatirad et al. 2013; Li et al. 2017a, b; El Haj et al.
2019; El Haj and Soubra 2020), although the present investigation
primarily focused on 3D shallow foundations, and so those inves-
tigations were not pursued further here.

With reference to Eq. (1), there are two alternative ways to find
bearing capacity solutions of square footings resting on 3D soils:
one is to derive a relationship between the 2D plane strain bear-
ing capacity solution, which assumes an infinite scale of fluctuation
in the out-of-plane direction, and the full 3D solution [although
this is a costly exercise, because no simple relationship exists
(Li et al. 2020)]; the other is to use an analogy of the 2D bearing
capacity equation for the square footing, without resorting to sc,
that is

qf ¼ cu × N 0
c ð3Þ

where N 0
c = deterministic bearing capacity factor for square footing

(which may be defined in this case as N 0
c ≈ 1.2 × 5.14). This ap-

proach avoids the problem of modifying the shape factor, and, in
the case of spatially varying cu, cu can be replaced by c̄u, which is
an effective value of cu that accounts for the spatial variability of
the soil in the failure zone.

Therefore, instead of trying to provide a link between the sta-
tistics of the 2D solution and those of the real 3D square footing
solution, this paper solved the problem by using the 3D counterpart
of Eq. (1), that is, Eq. (3) with cu replaced by c̄u. However, it is
quite challenging to find c̄u without resorting to costly numerical
analyses using methods such as the finite-element method or finite-
difference method (Ching et al. 2014, 2015, 2016a). Fenton and
Griffiths (2003) proposed using geometric averages over some
domain below the footing to represent c̄u, based on rigorous local
averaging derivations and verification against random finite-element
analysis (FEA) results of a strip footing problem in two dimensions.
The present paper extends the theoretical work of Fenton and
Griffiths (2003) to three dimensions and examines the variability
of qf for square footings supported by 3D spatially varying clay
soils. The importance of the theoretical work of Fenton and Griffiths
(2003) is obvious; properly extended to three dimensions and vali-
dated, it can be used to derive analytically the first two moments of
qf for a square footing, thereby avoiding the enormous computa-
tional resources that otherwise would be required. Although the ex-
tension to three dimensions is relatively straightforward, there are
distinct features and open questions for 3D problems [compared
with 2D problems, e.g., Ching et al. (2016b)] requiring further sys-
tematic investigation. For example, due to the failure path in three
dimensions being a surface, the degree of spatial averaging or mag-
nitude of variance reduction is different by a significant amount.
Therefore, the calculated probability of failure also differs signifi-
cantly in magnitude. In addition, there is the follow-up question

about whether a simple extension of the 2D averaging domain size
to three dimensions is applicable, due to the different degree of spa-
tial averaging. If it is not applicable in three dimensions, what aver-
aging domain size should be used in three dimensions? How does it
change when the spatial variability characteristics (e.g., coefficient
of variation or correlation scale) change? Moreover, what are the
bounds of the solution, and how do they help explain the solution
behavior? How good are the mean and variance estimators? These
are all open questions that need to be answered through a detailed
investigation. Because most problems encountered in practice are
3D, it seems natural to turn to 3D studies, as opposed to the numer-
ous 2D studies in the literature.

This paper starts by reviewing the random field model used to
represent the soil spatial variability. The theoretical model then is
introduced, followed by a verification through Monte Carlo (MC)
simulation of the square footing problem in terms of both the two
moments and the probability of a design failure of the square foot-
ing. In contrast to the previous 2D study (Fenton and Griffiths
2003), this paper presents a systematic investigation of the proba-
bility of failure and its confidence intervals (CIs) for various sce-
narios of spatial variability; i.e., it explores the conditions in which
the theoretical predictions can be used confidently and conditions
in which they can be used only as preliminary indicators of the
foundation safety level. It is important to focus on the probability
of failure, because a slight error in the estimate of the mean could
result in a large error in the failure probability estimate, depending
on the variance estimate.

Random Field Model

In practical geotechnical applications, random fields have been
used extensively for representing the spatial variation of soil prop-
erties (Fenton and Griffiths 2008; Li et al. 2015b, 2016b; Luo and
Bathurst 2017; Hicks and Li 2018). The generation of a random
field of soil properties requires as input the following statistical
parameters: the mean value (μ), the standard deviation (σ) or vari-
ance (σ2), and the correlation length or scale of fluctuation (SOF)
(θ) that characterizes generally the spatial fluctuation scale of the
spatially varying soil property. The coefficient of variation (COV)
(vc ¼ σ=μ) alternatively can be provided instead of the standard
deviation, and the scale of fluctuation is associated with some form
of correlation function to describe the correlation coefficient between
any pair of points in space (Vanmarcke 1977, 1978, 1983).

Of the various methods of generating/discretizing random fields
(Matthies et al. 1997), the spatial averaging method (Vanmarcke
and Grigoriu 1983) or local average subdivision (LAS) method
(Fenton and Vanmarcke 1990) was used in this paper. According
to Der Kiureghian and Ke (1987), stochastic finite-element analysis
using LAS as a random field discretization method can produce
relatively accurate results of structural reliability even when using
rather coarse meshes. Due to the consistency in modeling the vari-
ance for different element sizes in the mesh, LAS combined with a
relatively coarse mesh yields quite good results, as is shown in the
following sections.

In this study, the soil undrained shear strength (cu) was assumed
to be characterized by a stationary, lognormally distributed random
field, with mean μcu , standard deviation σcu , and an exponential
correlation structure parameterized with the scale of fluctuation θcu .
A lognormally distributed random field is generated by transform-
ing a normally distributed random field (i.e., the underlying field)
Sln cuðxÞwith zero mean, unit variance, and scale of fluctuation θln cu
through
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cuðxÞ ¼ expðμln cu þ σln cuSln cuðxÞÞ ð4Þ

where x = spatial coordinates; and μln cu and σln cu = mean and stan-
dard deviation of the underlying normal random field, respectively.
The following relationships are used to transform from cu space to
ln cu space:

σ2
ln cu

¼ ln

 
1þ σ2

cu

μ2
cu

!
ð5aÞ

μln cu ¼ lnμcu − ð1=2Þσ2
ln cu

ð5bÞ

These transformation equations hold for any lognormally
distributed variable. The section “Monte Carlo Simulation versus
Theoretical Predictions” shows that qf follows a lognormal distri-
bution, so Eqs. (5a) and (5b) are equally applicable when using the
subscripts qf and ln qf.

The correlation structure is characterized here by a correlation
function of a simple exponential form parameterized by the scales
of fluctuation θvln cu and θhln cu in the vertical and horizontal direc-
tions, respectively

ρln cuðτ1; τ2; τ3Þ ¼ exp

 
− 2jτ3j
θvln cu

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2τ1
θhln cu

�
2

þ
�
2τ2
θhln cu

�
2

s !
ð6Þ

where τ ¼ fτ1; τ2; τ3gT ¼ x − x 0 = separation distance vector be-
tween two spatial points x and x 0. Eq. (6) has a partially separable
form in τ 3 (vertically) due to geological layer deposition. This cor-
relation function governs the underlying Gaussian random fields, as
indicated by the subscript ln cu of ρ. Although this study conducted
investigations based only on the isotropic correlation structure
(i.e., θhln cu ¼ θvln cu ¼ θln cu ) because the objective was to focus on
the fundamental stochastic behavior of bearing capacity for the
simplest case, the more general form of an anisotropic correlation
function with two fluctuation scales was retained.

Based on the preceding random field model, it is possible to
produce a series of random field realizations of spatially varying
soil properties. For illustrative purposes, Figs. 1(a and b) are exam-
ple realizations of spatially varying ln cu fields characterized by
relatively small or large SOFs, with strong and weak soils repre-
sented by darker and lighter regions, respectively.

Theoretical Model

The idea of using the statistics of a geometric average over some
domain directly below the footing to predict the mean and variance

of bearing capacity of spatially varying soils was proposed by
Fenton and Griffiths (2003) for a plane strain strip footing. In view
of the weakest link phenomenon in which soils seek out the weak-
est path possible in bearing stability problems, the geometric aver-
age is a good choice because it is low-value dominated. Very good
predictions of the mean and variance of strip footing bearing capac-
ity were obtained by Fenton and Griffiths (2003). This paper there-
fore extends their study to square footings on a three dimensional
heterogeneous soil to validate the applicability in three dimensions.
The emphasis here is on the 3D characteristics of the model and the
theoretical bounds of the mean solution as a function of the scale of
fluctuation, which is necessary to assess the error and confidence
of the mean and probability of failure predictions for a variety of
possible inputs in the section “Monte Carlo Simulation versus
Theoretical Predictions.” It is postulated that, for a square footing
on a spatially uniform soil, Eq. (3) could be used by replacing cu
with some effective value c̄u, which in this case is the geometric
average over some rectangular cuboid domain directly under the
footing; that is

qf ¼ c̄u × N 0
c ð7Þ

This assumes that soils with spatially varying cu have the same
bearing capacity as soils that are spatially uniform but with an
effective/equivalent c̄u. The geometric average c̄u over some con-
tinuous soil domain D, of size Lx × Ly × Lz, is defined as

c̄u ¼ exp

�
1

LxLyLz

Z
Lz

0

Z
Ly

0

Z
Lx

0

ln cuðxÞdxdydz
�

ð8Þ

where x ¼ ðx; y; zÞ is a point in space.
When discretized into a series of nonoverlapping soil elements,

such as in finite elements, c̄u is given as

c̄u ¼
 Yn

i¼1

cuðxiÞ
!

1=n

¼ exp

 
1

n

Xn
i¼1

ln cuðxiÞ
!

¼ exp

�
1

n

Xn
i¼1

ðμln cu þ σln cuSln cuðxiÞÞ
�

¼ expðμln cu þ σln cu S̄
a
ln cu

Þ ð9Þ
where n = number of nonoverlapping rectangular cuboid elements
to be averaged below the footing; xi = ith element location in
space; and

S̄aln cu ¼
1

n

Xn
i¼1

Sln cuðxiÞ ð10Þ

Fig. 1. Example spatial variability illustration of ln cu with different scales of fluctuation and domain size 5 × 5 × 2 m: (a) θln cu ¼ 0.1 m; and
(b) θln cu ¼ 2 m.
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is the arithmetic average of Sln cuðxÞ over domain D. Superscript a
is used for S̄ to distinguish it from c̄u, in which the overbar in-
dicates a geometric average. The derivation in Eq. (9) makes
use of Eq. (4).

Eq. (7) can be nondimensionalized by dividing by the mean of
cu, thus defining the stochastic bearing capacity factor Mc

Mc ¼
qf
μcu

¼ c̄uN 0
c

μcu

ð11Þ

Because cu is assumed to be log-normally distributed, c̄u also is
log-normally distributed acoording to Eq. (9), which in turn implies
a log-normal distribution for qf [Eq. (7), where N 0

c is constant for
cohesive soils] and Mc [Eq. (11)]. Thus, taking logarithms of
Eq. (11) gives

lnMc ¼ ln qf − lnμcu ¼ ln c̄u þ lnN 0
c − lnμcu ð12Þ

Statistical Moments of lnMc

The problem now is to find the mean and variance of the normally
distributed lnMc. The mean of lnMc is

μlnMc
¼ μln c̄u þ lnN 0

c − lnμcu ð13Þ
The terms lnN 0

c and lnμcu are constants for any given μcu ; N
0
c can

be given simply as 1.2 × 5.14 or determined by a single determin-
istic finite-element analysis based on μcu [Eq. (3)]. The term μln c̄u
can be obtained by taking logarithms of Eq. (9) as follows:

μln c̄u ¼ E½μln cu þ σln cu S̄
a
ln cu

� ¼ μln cu þ σln cuE½S̄aln cu � ð14Þ

where E½·� denotes the expectation operator.
According to Eq. (10) and local averaging theory (Vanmarcke

1983), the expectation of S̄aln cu is zero, that is

E½S̄aln cu � ¼ E½Sln cu � ¼ 0 ð15Þ

Therefore, μln c̄u ¼ μln cu , so Eq. (13) can be expressed as

μlnMc
¼ μln cu þ lnN 0

c − lnμcu ð16Þ
Combining Eqs. (5) and (16) gives

μlnMc
¼ lnN 0

c − 0.5 ln

 
1þ σ2

cu

μ2
cu

!
ð17Þ

In Eq. (12), the variance of lnMc equals the variance of ln c̄u,
that is

σ2
lnMc

¼ σ2
ln c̄u

ð18Þ
The variance of ln c̄u can be obtained by taking logarithms of

Eq. (9) and using basic properties of variance operation, that is

σ2
ln c̄u

¼ σ2
ln cu

× σ2
S̄aln cu

ð19Þ

According to Eq. (10) and local averaging theory (Vanmarcke
1983), the variance of S̄aln cu is given by σ2

S̄aln cu
¼ γðDÞ × σ2

Sln cu
,

where σ2
Sln cu

¼ 1.0 and γðDÞ is the variance reduction function that

quantifies the ratio between the variance of arithmetic local aver-
ages over domain D and the variance of the point process.

Substitution of Eq. (19) into Eq. (18) leads to the following ex-
pression for the variance of lnMc:

σ2
lnMc

¼ γðDÞσ2
ln cu

¼ γðDÞ ln
 
1þ σ2

cu

μ2
cu

!
ð20Þ

Eq. (5a) is used in Eq. (20). For an exponential correlation func-
tion [Eq. (6)] that is separable in the vertical direction, the variance
reduction function γðDÞ also is separable in the vertical direction
and can be expressed as

γðDÞ ¼ γðLx;Ly;LzÞ ¼ γðLzÞ × γðLx;LyÞ ð21Þ

where γðLzÞ is given analytically as

γðLzÞ ¼
1

2

�
θvln cu
Lz

�
2
�
2Lz

θvln cu
þ exp

�
− 2Lz

θvln cu

�
− 1

�
ð22Þ

and γðLx;LyÞ can be approximated as

γðLx;LyÞ ¼
1

2
½γðLxÞγxðLyÞ þ γðLyÞγyðLxÞ� ð23Þ

for the horizontally isotropic radial correlation part (Vanmarcke
1983).

The variance reduction functions γðLxÞ and γxðLyÞ in Eq. (23)
are defined as follows (Fenton and Griffiths 1993, 2002):

γðLxÞ ¼
�
1þ

�
Lx

θhln cu

�
3=2
�−2=3

ð24Þ

γxðLyÞ ¼
�
1þ

�
Ly

θyx

�
3=2
�−2=3

ð25Þ

θyx ¼ θhln cu

�
π
2
þ
�
1 − π

2

�
exp

�
− L2

x

ðπ=2Þ2ðθhln cuÞ2
��

ð26Þ

Similar equations can be expressed for γðLyÞ and γyðLxÞ using a
similar expression for θxy; that is, by simply changing the subscripts
and superscripts in Eqs. (24)–(26) from x to y and from y to x.

Alternatively, γðDÞ can also be obtained from numerical inte-
gration of the correlation function [Eq. (6)], for example, by Gauss–
Legendre quadrature (Fenton and Griffiths 2008).

Statistical Moments of Mc

With reference to Eq. (9), c̄u follows a log-normal distribution.
Thus, by using the generic inverse transformations of Eq. (5)
(i.e., replacing cu with c̄u and ln cu with ln c̄u) and Eqs. (14), (19)
and (5), the first two moments of c̄u are

μc̄u ¼ exp

�
μln c̄u þ

1

2
σ2
ln c̄u

�
¼ μcu ×

1

ð1þ v2cÞ½1−γðDÞ�=2 ð27Þ

and

σc̄u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðσ2

ln c̄u
Þ − 1

q
× μc̄u

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ v2cÞγðDÞ − 1

q
× μcu ×

1

ð1þ v2cÞ½1−γðDÞ�=2 ð28Þ

Taking expectations of Eq. (11) leads to

μMc
¼ μqf

μcu

¼ μc̄u × N 0
c

μcu

ð29Þ

Eq. (27) indicates the following:

μc̄u ¼ μcu ×
1

ð1þ v2cÞ½1−γðDÞ�=2 →
γðDÞ→0

mcu ¼ μcu ×
1

ð1þ v2cÞ1=2
ð30Þ

© ASCE 04021035-4 J. Geotech. Geoenviron. Eng.

 J. Geotech. Geoenviron. Eng., 2021, 147(6): 04021035 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

D
A

L
H

O
U

SI
E

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/0

6/
21

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



where mcu = median of cu. Moreover, for 0 ≤ γðDÞ ≤ 1.0, the
following holds:

μcu ×
1

ð1þ v2cÞ½1−γðDÞ�=2 ≥ μcu ×
1

ð1þ v2cÞ1=2
ð31Þ

In other words, μc̄u ≥ mcu , and μqf decreases toward mcuN
0
c

{i.e., the qf value based on the median [Eq. (11)]} as γðDÞ ap-
proaches 0 [or μMc

decreases toward ðmcuN
0
cÞ=μcu , the Mc value

based on the median]. This means that for the same domain D,
as θln cu decreases and thereby γðDÞ becomes smaller, the mean
bearing capacity μqf (or mean bearing capacity factor μMc

) ap-
proaches the bearing capacity qf (or bearing capacity factor Mc)
based on the median of cu. Conversely, when γðDÞ approaches
1.0 (θln cu goes to infinity), μqf increases toward μcuN

0
c (i.e., the qf

value based on the mean).
Eq. (17) is equivalent to taking c̄u as the median (i.e., μcu=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2c

p
) in Eq. (11); that is, the prediction equation for μlnMc

coincides with μlnMc
based on the median.

According to Eq. (11), the standard deviation of Mc is

σMc
¼ σqf

μcu

¼ σc̄u × N 0
c

μcu

ð32Þ

where σc̄u is given in Eq. (28).

Probability of Failure

Based on Eqs. (17) and (20), the probability of a design failure (pf)
for a certain factor of safety F relative to the deterministic qf, qdf,
based on the mean μcu may be defined as

pf ¼ P

�
qf ≤ qdf

F

�
¼ P

�
qf
μcu

≤ N 0
c

F

�
¼ P

�
Mc ≤ N 0

c

F

�

¼ P

�
lnMc ≤ ln

N 0
c

F

�
¼ Φ

 
ln N 0

c
F − μlnMc

σlnMc

!
ð33Þ

where Φ = cumulative standard normal distribution function;
and qdf ¼ μcuN

0
c.

No variation of footing load was considered in this paper; the
probability of failure is defined as the probability of the bearing
capacity of a varying soil being smaller than the deterministic bear-
ing capacity based on the mean property value divided by some
factor of safety (which gives the allowable bearing capacity,
i.e., qaf ¼ qdf=F).

Finite-Element Model

A viscoplastic finite-element program was written, based on Smith
and Griffiths (2005), to carry out the bearing capacity analysis of a
rough rigid square footing founded on a weightless soil with spa-
tially varying shear strength parameter cu. The algorithm performs
iterative plastic stress redistribution by using an elastic-perfectly
plastic stress–strain relationship with a Tresca failure criterion.

The finite-element program has three input parameters: Young’s
modulus E, Poisson’s ratio ν, and undrained shear strength cu.
In this study, cu was treated as a random field, whereas E and ν
were kept constant (i.e., E ¼ 100,000 kN=m2, and ν ¼ 0.3) be-
cause their values do not significantly affecting the ultimate bearing
capacity (Li et al. 2020). The E values were chosen such that E=μcu
fell in the range 100–1,500 (Bowles 1996). Although an undrained
analysis implies a Poisson’s ratio of 0.5, the smaller value (i.e., 0.3)
used in this paper aids numerical stability and efficiency, without
affecting the computed bearing capacity (Li 2017). The bearing

capacity is computed based on the sum of nodal reaction forces
Qf using the converged stress field; convergence is defined as
the point at which the sum of the nodal reactions levels out within
a relative error tolerance of 0.0001. The bearing capacity then is
computed as

qf ¼ Qf=BL ð34Þ
where B and L = footing width and length, respectively. In the case
of square footings, L ¼ B.

Fig. 2 shows the 3D finite-element mesh discretization used in
the following analyses, relative to a Cartesian (i.e., x, y, z) coor-
dinate system. The mesh comprises 3,200 14-node hexahedral
elements (20 × 20 × 8). Each element has dimensions of 0.25 ×
0.25 m in plan and 0.25 m in depth. Thus, the problem domain
has a size of 5 × 5 × 2 m. The footing width considered is
B ¼ 1.0 m. The finite-element analysis domain size used for B ¼
1.0 m has been shown to be sufficiently large to avoid significant
boundary effects (Li et al. 2020). The boundary conditions are a
fixed base, and rollers on the two x–z (front and back) and two
y–z (left and right) faces preventing displacement perpendicular
to the faces. The rough footing conditions are simulated by
restraining horizontal displacements (i.e., in the x- and y-directions)
of the nodes representing the footing.

Deterministic Finite-Element Analysis

Deterministic FEA was carried out with the mean undrained shear
strength, μcu ¼ 100 kPa, and COV vc ¼ 0. Various finite-element
sizes (by varying the number of elements discretizing the problem
domain) and types (14-node or 20-node) first were used to inves-
tigate the influence of mesh density and element type. The calcu-
lated bearing capacity factors (N 0

c) and required running time for a
rough rigid footing are listed in Table 1 for various combinations.
The results of analyses with the 14-node elements were virtually
identical to those with the 20-node elements. Furthermore, results
using finer meshes were closer to the theoretical solution of 1.2 ×
5.14 (Meyerhof 1951) (this theoretical value was based on circular
footings, because no theoretical solutions for square footings are
available). An improved agreement between the computed and
theoretical solution can be obtained by using even finer meshes.
However, the computational cost then increases substantially. To
run the following (Monte Carlo) analyses in a reasonable time,
the coarse mesh with 14-node elements was used in this study.
(Using the finer mesh would have required 1 month to run 200
realizations serially on a single CPU for a given combination of

Fig. 2. Deformed finite-element mesh (with example deformations
enlarged by a factor of 3) for square footings.
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SOF and COV; hence, the total time for the following 6 × 7 cases
would have been infeasible.)

The bearing capacity factor N 0
c ¼ 7.389 obtained using the

coarse mesh was too crude an approximation (it should be
6.17). To take account of the discretization error in the following
Monte Carlo investigation, the calculated bearing capacity factors
{Mc [Eq. (35)]} using the crude mesh were normalized by the cor-
responding finite-element deterministic values of 7.389 and then
scaled to bearing capacity factors relative to 6.517 (i.e., the deter-
ministic value N 0

c based on the finer mesh); N 0
c ¼ 6.517 is very

close to the theoretical value of 6.168 and was considered to be
acceptable, with a relative error of 5.6%. This normalization and
scaling procedure was based on Li et al. (2020), who ran MC sim-
ulations for both coarse and finer meshes and observed that
M1

c=N 01
c ≈ M2

c=N 02
c (where 1 and 2 represent FE discretization

levels) for typical scenarios of spatial variability (i.e., typical values
of SOF representing small, medium, and large scale variability) and
COV ¼ 0.2. This also was observed herein for COV ¼ 0.5, i.e., the
higher end of the COV range of practical interest. With this pro-
cedure, costly MC simulations based on the fine mesh for various
cases were avoided by scaling the results (by a factor of 6.517/
7.389) based on the coarse mesh. In this case, N 01

c ¼ 7.389 and
N 02

c ¼ 6.517, and the randomM1
c values were the series of MC sim-

ulation results based on the coarse mesh. Therefore, the MC simu-
lation directly calculated M1

c results based on the coarse mesh and
these values then were scaled to a series of values that closely ap-
proximated M2

c, the MC results of the finer mesh. This procedure
made this study feasible while maintaining relatively good accuracy.

Monte Carlo Simulation versus Theoretical
Predictions

The finite-element and random field models previously introduced
were combined (i.e., by mapping random field values to the 2 × 2 ×
2 Gaussian points within each finite element) within a Monte Carlo
simulation framework, a form of analysis sometimes referred to as
the random finite-element method (RFEM) (Fenton and Griffiths
2008), to carry out the parametric studies in the following sections.
Table 2 lists the input parameters for the Monte Carlo simulations.
The values of COV, vc, were chosen based on the recommended
range of 0.1–0.5 for clays (Lee et al. 1983; Hicks and Samy
2002; Li 2017). This range is based on databases (e.g., Phoon
and Kulhawy 1999) from geotechnical site investigations (i.e., from
which a statistical analysis can be made to separate the COV due to
soil spatial variability from the COV due to insufficient information

or limited intensity, usually called statistical uncertainty). However,
it is argued that larger COVs also may be possible in view of the
difficulty in separating the two COVs without further site investi-
gations (which is likely to be the case for any new design). There-
fore, some higher COVs also were assumed in this study. In order
for the COVs from a large database to be realistic, staged site in-
vestigation data must be analyzed to separate COVs due to statis-
tical errors from COVs due to inherent soil spatial variability.

The values of the scale of fluctuation of clay soils were chosen
based on a comprehensive literature review (Li 2017), which re-
ported various SOF values for the cu of clay soils. Due to geologi-
cal deposition, the SOF in the horizontal direction generally is
larger than the SOF in the vertical direction. Although the analysis
models in this paper are capable of simulating anisotropically cor-
related random fields, the following results are presented only for
the case of isotropic heterogeneity. Site-specific anisotropy is left
for later work.

Based on the SOF values in the literature, seven cases (Table 2)
for the scale of fluctuation θln cu were investigated [θln cu is not much
different in magnitude from θcu for practical ranges of COV
(Griffiths and Fenton 2001; Popescu 2004; Fenton and Griffiths
2004)]. Each MC simulation involved the generation of N realiza-
tions of the shear strength random fields and the subsequent nonlin-
ear finite-element analysis of the bearing capacity. The bearing
capacity for each realization was different due to different (relative)
spatial distributions of strong and weak soil elements. For each reali-
zation, a stochastic bearing capacity factor, nondimensionalized with
respect to the mean undrained shear strength μcu , is given by

Mi
c ¼ qif=μcu ; i ¼ 1; 2; : : : ;N ð35Þ

where superscript i denotes realization number; and N ¼ 200 =
number of realizations. For N ¼ 200, the standard error for the es-
timate of the mean ofMc is

ffiffiffiffiffiffiffiffiffi
1=N

p
σMc

¼ 0.07σMc
and the standard

error for the estimate of the variance ofMc is
ffiffiffiffiffiffiffiffiffi
2=N

p
σ2
Mc

¼ 0.10σ2
Mc
.

More realizations are needed to obtain a probability distribution
of Mc with more confidence. The standard deviation of the prob-
ability of failure pf is approximately

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfð1 − pfÞ=N

p
. For pf ¼

5% and N ¼ 200, σpf
≈ 1.5%, which is not a particularly small

standard error. However, because three-dimensional nonlinear
analysis is very time consuming (El Haj et al. 2019), the number
of realizations selected was deemed sufficient to analyze typical
trends and draw general conclusions in three dimensions. As a
compromise, the RFEM simulation results were not directly used
to estimate pf; instead, the fitted distribution parameters were used
to calculate the failure probabilities from the simulations, assuming
that the distribution of Mc continues to be modeled by the fitted
distribution at the tails (Fenton and Griffiths 2008). Other alterna-
tives include the use of an estimator variance reduction technique
such as subset simulation combined with random fields (Ahmed
and Soubra 2012; van den Eijnden and Hicks 2017), and the devel-
opment of efficient approximate analytical formulations, which
was precisely the goal of this study.

Variability of Bearing Capacity

A square footing with L ¼ B ¼ 1.0 m, resting at the center of the
problem domain, was investigated based on an ensemble of random
field realizations. Based on the previously mentioned normalization
and scaling procedure, Fig. 3 presents the probability distributions
from RFEM simulations for θln cu ¼ 2.0 m, for both COV ¼ 0.1
and 1.0. The fitted log-normal and predicted [Eqs. (17) and (20)]
distributions are superimposed on the histograms. The log-normal
distribution fit the simulated results quite well, with encouraging

Table 1. Bearing capacity factors and CPU timings for deterministic finite-
element analyses with different element sizes and types

Number of elements in
x- or y-direction Element type CPU time N 0

c

40 20-node 7 h 6.546
40 14-node 3.5 h 6.517
20 20-node 12 min 7.262
20 14-node 8 min 7.389

Table 2. Input parameters used in Monte Carlo simulations

Parameter Value

μcu (kPa) 100
vc 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
θln cu (m) 0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 50
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chi-squared goodness test p-values (i.e., large p-values support the
null hypothesis that the Mc distribution is approximated closely by
the log-normal distribution), and the predicted distribution also was
quite close to the fitted distribution. The FE deterministic value of
6.517 also is shown in Fig. 3. In the two cases [Figs. 3(a and b)], the
mean bearing capacity factor μMc

¼ 6.361 and 4.932, respectively,
both of which were smaller than the deterministic value of N 0

c ¼
6.517 due to the effect of spatial variability that promotes failure
surfaces along the weakest and shortest path. The smaller value of
4.932 was expected for a larger COV of 1.0, as is shown in the
section “Mean and Variance of Bearing Capacity” (Fig. 7).

Fig. 4 shows an example bearing failure of a square footing on
the soil mass with a spatially varying soil property [i.e., Fig. 1(b),
in which the square footing is represented by a square on the top
surface], computed based on the finer 40-element mesh (40×
40 × 16). The weaker (lighter) soil on the left side of the footing
[Fig. 1(b)] triggered a nonsymmetric failure mechanism, and the
failure surface only approximately followed a log spiral (i.e., the
RFEM sought the path of least resistance).

Mean and Variance of Bearing Capacity

Before comparing the two predicted moments of bearing capacity
with those directly calculated from the RFEM simulations, an aver-
aging domain size needs to be etermined. A size of D ¼ w × 5w,

where w is the active wedge zone depth ðB=2Þ tanðπ=4þ ϕ=2Þ for
the strip footing bearing failure mechanism, was recommended in
the 2D analysis of Fenton and Griffiths (2003). Hence, for a fric-
tionless soil, w ¼ B=2. Honjo and Otake (2013) recommended
an averaging domain of D ¼ 0.7B × 2B (Ching et al. 2015),
i.e., D ¼ 1.4w × 4w, in their analysis of cohesive soils, although
they suggested a larger domain for cohesionless soils based on
areas directly below the footing within the slip lines. For cohesive-
frictional soils, they suggested that the averaging domain should be
the same as that for cohesionless soils (Honjo and Otake 2013). In
terms of the volumes involved, the two cited studies are similar. For
cohesive soils in this study, an area of D ¼ w × 4w × 4w was used
unless stated otherwise. This is discussed further in the “Probability
of Failure” section.

Fig. 5(a) shows the mean bearing capacity from the RFEM sim-
ulations and the corresponding predicted solution based on the
theoretical equations, for various values of COV. For both small
enough SOF and large enough SOF, the simulation results tend to-
ward the prediction results. The simulation deviated from the pre-
diction for high COVs because of a valley–hill behavior (which is
explained subsequently) as θln cu decreased from 50 to 0.1 m, which
the theoretical model is not able to capture because it does not con-
sider the inherent mechanical stress–strain mechanism that governs
the failure together with random variation (whereas the RFEM sim-
ulation is perfectly capable of doing so). Fig. 5(b) shows the results
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Fig. 3. Frequency distributions from RFEM simulations with fitted log-normal and predicted distributions (θln cu ¼ 2.0 m, and N ¼ 200) (after
scaling to finer mesh): (a) COV ¼ 0.2; and (b) COV ¼ 1.0.

Fig. 4. An example failure mechanism (in terms of shear strain invariant) for the square footing on a spatially varying soil (θln cu ¼ 2.0 m) with
COV ¼ 0.2: (a) entire domain; and (b) domain cut.
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for σlnMc
, demonstrating that the predictions remarkably matched

the simulation results. In spite of the simplification regarding
the mechanical part, the theoretical model provides good results
(i.e., mean and variance) for parameters of practical interest
(i.e., COVs from 0.1 to 1.0).

Figs. 6(a and b) show the simulated μlnMc
as a function of SOF;

the horizontal lines are the predictions based on Eq. (17), which is a
function of COV {the vertical axis scales in the two sub-figures
indicate that as COV increases, μlnMc

decreases [Fig. 5(a)]}. When
SOF is small enough, μlnMc

is equivalent to running a single analy-
sis based on the median of cu and taking ln c̄u as μln c̄u in Eq. (13)—
i.e., in Eq. (9), when SOF is small, S̄a has negligible variance and
E½S̄a� ¼ 0, so that for any realization, S̄a ≈ 0, which makes
c̄u ≈ expðμln cuÞ, i.e., the median. When SOF is large enough,
μlnMc

is equivalent to running a series of analyses, each based on
a single value of cu (i.e., within each realization) that is random from

realization to realization, and taking the average of ln c̄u across real-
izations in Eq. (13) [in this case, the ln cuðxiÞ values (i ¼ 1; : : : ; n)
in Eq. (9) are the same for the n different locations within each reali-
zation; i.e., c̄u ¼ cju for realization j, so that μln c̄u is taken across the
realizations].

For the RFEM simulations, μlnMc
is a function of SOF. The

simulated valley–hill behavior of μlnMc
versus θln cu as SOF de-

creases may be better explained by the behavior of μMc
versus

θln cu [Figs. 7(a and b)], where μMc
is theoretically a function of

SOF [Eqs. (27) and (29)]. That is, the two moments of lnMc
are related to those of Mc by log-normal transformation equations
[Eq. (5)]. This also applies to ln qf and qf , because ln qf and lnMc

differ only by a constant lnμcu [Eqs. (7) and (12)], and Mc and qf
differ by a constant ratio μcu [Eq. (11)].

Theoretically, the μlnMc
or μln qf prediction is constant for any

given COV [Eq. (17)], and is not a function of SOF [i.e., a
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Fig. 5. Simulated and predicted mean and standard deviation of lnMc: (a) μlnMc
versus COV for various θln cu (line with square markers represents

prediction); and (b) σlnMc
versus COV for various θln cu (lines represent prediction, and various marker points represent RFEM simulation; subscripts

omitted for θln cu due to limited space).

10-1 100 101 102

ln c
u

 (m)

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

ln
M

c

v
c
 = 0.1

v
c
 = 0.1(prd)

v
c
 = 0.2

v
c
 = 0.2(prd)

v
c
 = 0.5

v
c
 = 0.5(prd)

10-1 100 101 102

ln c
u

 (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ln
M

c

v
c
 = 1

v
c
 = 1(prd)

v
c
 = 2

v
c
 = 2(prd)

v
c
 = 5

v
c
 = 5(prd)

(a) (b)

Fig. 6. μlnMc
versus θln cu for: (a) COV ¼ 0.1, 0.2, and 0.5; and (b) COV ¼ 1.0, 2.0, and 5.0. prd indicates prediction.
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horizontal line in Figs. 6(a and b)]. However, the theoretical pre-
diction of μMc

or μqf is a function of SOF [Eqs. (27) and (29);
Figs. 7(a and b)], and there are associated lower and upper bounds
when SOF approaches 0 or infinity. This is because the variance of
lnMc or ln qf comes into play when evaluating the mean of Mc or
qf [e.g., the inverse of Eq. (5) when considering the generic trans-
formations for any log-normally distributed variable] and the vari-
ance of lnMc or ln qf is related to the variance function which is a
function of SOF and domain size D [Eq. (20)].

Figs. 7(a and b) show the RFEM simulated μMc
versus θln cu for

various COVs and the predictions based on theory [Eqs. (27)–(29)],
together with their respective theoretical lower and upper bounds
(i.e., based on the median and mean, respectively). The valley–hill
behavior in the RFEM simulation may be noted when θln cu de-
creased from 50 to 0.1 m, especially for larger values of COV.
For small COV, the simulated results are expected to decrease to
results based on the median if an even smaller SOF is used.

The theoretical solution does not take account of the valley
mean bearing capacity behavior for intermediate values of θln cu ;
it continuously decreases as θln cu decreases. In contrast, the valley
occurred in the finite-element simulations due to the weakest path
mechanistic effect in the RFEM simulations. Therefore, without
disobeying the theoretical trend as θln cu decreases, a small hill (after
the valley) must appear in the simulated results before it continues
to decrease toward the theoretical lower bound (i.e., the value based
on the median). This valley value may be smaller or larger than the
value based on the median, and only in the former case can it be
called a worst case in which μMc

reaches a minimum.
Fenton and Griffiths (2003) also observed a valley behavior in

their 2D analyses, but they did not observe a hill followed by a
further reduction in μMc

as the SOF decreased. This is believed
to be due to the larger variance reduction in three dimensions than
in two dimensions [i.e., Eq. (21), which has an additional term in
three dimensions compared with two dimensions]; i.e., in the 2D
study, the γðDÞ term in Eq. (30) is not small enough to drive μMc

down to the value based on the median through Eq. (29).
Although the theoretical predictions of μMc

for large COV were
not particularly good, the predictions for practical ranges of COV
(i.e., in the range 0.1–0.5) were quite good [Figs. 6(a) and 7(a); note
the change in vertical axis scales].

Probability of Failure

This paper is intended for the reliability-based design of footings
targeting some acceptable failure probability, and, when evaluating
the failure probability, both the mean and variance of ln qf or lnMc
come into Eq. (33); hence, the statistics of ln qf or lnMc then are
directly relevant.

Fig. 8 shows the simulated probability of failure [based on
Eq. (33), with the first two moments calculated directly from
Eqs. (35) and (34)] versus the predicted probabilities of failure
[based on Eq. (33), with the two moments predicted using theoreti-
cal equations] for various SOFs and COVs using an averaging do-
main of w × 5w × 5w; the 95% confidence interval also is plotted
(dotted lines). Although most of the points lie within the 95% con-
fidence interval, some predictions are on the unconservative side,
i.e., predicted pf smaller than simulated pf. This was because the
variance predictions for lnMc when using D ¼ w × 5w × 5w were
smaller than the simulated variance, whereas the mean predictions
for lnMc did not change (i.e., they were not related to D). The re-
sults in Fig. 8 are based on F [Eq. (33)] increasing from the upper
right corner to the lower left corner.

To attempt to improve the theoretical prediction, a smaller do-
main of D ¼ w × 4w × 4w also has been used, i.e., to increase the
prediction variance (a smaller domain means less variance reduc-
tion) and thus increase the predicted pf and reduce the degree of
unconservatism (Fig. 9). The points in Fig. 9 are less disperse; they
lie more closely within the 95% confidence interval and mainly lie
on the conservative side, i.e., the predicted pf is slightly larger than
the simulated value in most cases. The agreement between the
simulation and prediction is very good for COVs of practical
interest, but not very good for high COVs (not shown). This is
to be expected, because the probability predictions are only as good
as the predictions of the two moments presented previously—
i.e., the prediction of μlnMc

is not very good for high COVs
[Fig. 5(a)]. For COVs of concern in practice, the case of θln cu ¼
0.1 m was overly conservative, largely due to the underpredicted
mean [Figs. 6(a and b)]. This is an exceptional case in which the
larger averaging domain (w × 5w × 5w) may predict a better pf,
i.e., the values of pf are not too conservative (Figs. 8 and 9).
The underprediction of the variance (when using w × 5w × 5w),
combined with the underprediction of the mean for this particular
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respectively) indicated as lines without markers; and prd indicates prediction.
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value of SOF ¼ 0.1 m, caused the overpredicted pf to be less
conservative or even slightly unconservative [Figs. 8(b) and 9(b)].
Intuitively, for higher COVs, the probability prediction for θln cu ¼
0.5 m should be worse than for θln cu ¼ 0.1 m, because the corre-
sponding μlnMc

prediction is worse [Fig. 6(b)]; however, Fig. 9 shows
the opposite. This is because the small θln cu value of 0.1 m yields the
smallest σlnMc

, which in turn implies a rapidly increasing cumulative
distribution of lnMc over a small range. Thus, slight errors in the
estimate of μlnMc

yield large errors in the probability prediction.
The use of w ¼ B=2 for frictionless soil, as mentioned previ-

ously, was based on the active wedge zone depth in the failure
mechanism. It may be argued that the influence zone depth may
be slightly larger than the active wedge zone depth due to the pres-
ence of the log-spiral zone. On the other hand, the actual volume of
soils resisting the bearing failure along the failure surfaces (i.e., the
volume of soil involving plastic deformation) may be smaller than
the failure region enveloped in the failure surface (and therefore a
smaller horizontal dimension may be applicable). Therefore, aver-
aging domains of D ¼ 1.5w × 4w × 4w and 1.5w × 3w × 3w also
were studied. The results of D ¼ 1.5w × 4w × 4w had somewhat
more-unconservative values of pf than those of D ¼ w × 4w × 4w

due to the larger averaging domain (i.e., smaller prediction variance).
The results of D ¼ 1.5w × 3w × 3w, on the other hand, had more-
conservative predictions of pf than those of D ¼ w × 4w × 4w. Just
as Fig. 8 shows predictions that are too much on the unconservative
side, Fig. 10 shows the other end of the prediction spectrum (i.e., pre-
dictions that are too conservative). Overall, other averaging domain
sizes (by trial and error) did not provide better results than those
in Fig. 9.

A fixed averaging domain was used in this paper, and the results
of using w × 4w × 4w were satisfactory for practical values of
COVs. Comparing Figs. 8 and 9, however, indicated that an aver-
aging domain of w × 5w × 5w may be better for small and large
values of SOF. This is somewhat to be expected, because for small
or large values of SOF, the failure mechanism is approaching the
deterministic failure surfaces, based on which the domain of w ×
5w × 5w was chosen in the first place. For intermediate values of
SOF, the smaller domain of w × 4w × 4w is better.

Figs. 8–10 are useful for examining the validity of the theoreti-
cal prediction equations in this study. However, to use these
figures directly for design purposes, it is better to consider the prob-
abilities of failure as functions of the factor of safety F, SOF, and
COV. Fig. 11 shows the probability of failure versus F for various
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Fig. 8. Predicted (prd) versus simulated (sim) probabilities of failure for different values of the scale of fluctuation, with averging domain size
w × 5w × 5w: (a) COV ¼ 0.1; (b) COV ¼ 0.2; (c) COV ¼ 0.5; and (d) COV ¼ 1. Dotted lines indicate the 95% confidence interval.
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SOFs and COV ¼ 0.1 and 0.5, together with the 95% confidence
intervals of the simulated probabilities. All predictions agreed
quite well with the simulations [the match in Figs. 11(a–d) is
remarkably good, with the simulated points overlapping the predic-
tion line], with some predictions being slightly conservative.
In cases in which the predictions were slightly conservative
[e.g., Figs. 11(e and f)], the predictions still were within the 95%
confidence interval of the simulated probabilities. This discrepancy
largely may be due to the pf estimator error in the simulations. That
is, more realizations in the simulations are needed to have a smaller
σpf

. In this analysis, the simulation cannot be used for small prob-
abilities less than 0.01 (the coefficient of variation of pf at this level

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.01 × 0.99 × 200

p
=0.01 ¼ 0.7, so for pf < 0.01, the simula-

tion results are not very accurate.).

Limitations and Discussion

Despite the excellent prediction capability of the theoretical equa-
tions for practical ranges of COV, this study is not without its lim-
itations, which are as follows:

• The theoretical predictions of bearing capacity variability were
validated through comparison with random finite-element sim-
ulations. It is assumed that finite-element models can represent
closely the behavior of bearing stability under square footings.
Although this may not be exactly true, because the true mechani-
cal behavior may never be really known, the assumption seems
reasonable at this stage.

• The bearing capacity variability was due purely to soil spatial
variability in this study, and not to, e.g., statistical uncertainties
arising from limited sampling. In cases in which these two un-
certainty sources are not easily separable, it still is assumed that
the adopted COV is due only to spatial variability, although high
COVs purely due to spatial variability are highly unlikely in
practice. Because the basic theory used in this study was local
averaging and variance reduction, uncertainty due to other sour-
ces was not applicable. However, other uncertainties easily may
be superimposed on the variance estimator and any bias factor
on the mean estimator.

• The paper focuses on the stochastic behavior of bearing capac-
ity assuming soil heterogeneity with an isotropic correlation
structure. However, it is believed that the general theoretical
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Fig. 9. Predicted (prd) versus simulated (sim) probabilities of failure for different values of the scale of fluctuation, with averging domain size
w × 4w × 4w: (a) COV ¼ 0.1; (b) COV ¼ 0.2; (c) COV ¼ 0.5; and (d) COV ¼ 1. Dotted lines indicate the 95% confidence interval.
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solutions also hold for transverse correlation anisotropy, i.e., by
using different scales of fluctuation in the three directions or two
identical horizontal SOFs and a separate vertical SOF in the
variance function. In fact, in this study the averaging domain
was taken to be a rectangular domain with a smaller depth to
easily accommodate such situations.

• To be analytically tractable, only stationary random fields
were considered. For nonstationary random spatial variability,
e.g., when a depth trend is present or when the soil is layered,
it is possible to calculate numerically the mean and variance of
c̄u from an ensemble of random field realizations. In this case,
one still may be able to estimate the mean and variance of the
bearing capacity and thus the probability of failure via only ran-
dom field simulations, without having to run the random finite-
element model. The time and computer memory required for
random field simulations are substantially less than those for
the nonlinear finite-element analysis, and it is feasible to under-
take such simulations on standard desktop computers. However,
this still needs validation against RFEM analysis. Research in
this direction is continuing for overall generality. The situation
of multiple soil layers, each with its own statistics, falls into this
zonal nonstationarity in general. The aforementioned approach

also applies in this case if the layer boundary depth is smaller
than the averaging depth w, as long as the failure mechanism
passes through all layers. This was discussed further by Bowles
(1996) and Kuo et al. (2009).

• Although at most building sites the soil properties at soil sample
locations are known, this was not incorporated in the present
model. However, conditioning the random field model to be re-
strained by samples is straightforward and was used in other
problems such as slope stability to investigate the influence of
sample location and sample intensity (Li et al. 2016b). Although
a theoretical model based on conditional random fields is the
subject of continuing research, such a model necessarily is more
site-specific and is not used easily to make general statements
about foundation failure probability (unless every site has the
identical sample locations relative to the foundation). Because
the effect of known soil data at some distance from the founda-
tion has the main consequence of changing the variance (uncer-
tainty) of the soil properties under the foundation, the results of
this paper still can be used by suitably picking the appropriate
standard deviation. However, the choice of standard deviation,
as a function of the distance to known data, is a topic of future
research.
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Fig. 10. Predicted (prd) versus simulated (sim) probabilities of failure for different values of the scale of fluctuation, with averging domain size
1.5w × 3w × 3w: (a) COV ¼ 0.1; (b) COV ¼ 0.2; (c) COV ¼ 0.5; and (d) COV ¼ 1. Dotted lines indicate the 95% confidence interval.
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Fig. 11. Predicted (prd) and simulated (sim) probabilities of failure versus F (relative to N 0
c) for different scales of fluctuation and COVs, with

averaging domain size w × 4w × 4w (LB denotes lower bound, UB denotes upper bound and CI denotes confidence interval): (a) θln cu ¼ 0.5 m,
and COV ¼ 0.1; (b) θln cu ¼ 0.5 m, and COV ¼ 0.5; (c) θln cu ¼ 2 m, and COV ¼ 0.1; (d) θln cu ¼ 2 m, and COV ¼ 0.5; (e) θln cu ¼ 8 m, and
COV ¼ 0.1; and (f) θln cu ¼ 8 m, and COV ¼ 0.5.
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• Avalley–hill behavior of the mean logarithmic bearing capacity
was found in the random finite-element simulation, because the
method is capable of capturing the weakest link phenomenon at
some intermediate value of the scale of fluctuation. In contrast,
the prediction of the mean is not capable of capturing this criti-
cal valley–hill behavior. Although an empirical modification of
the mean is possible based on all the simulation results, this was
not pursued because this kind of empirical modification can not
readily be considered general, and is possible only through re-
gression analysis of all results from RFEM simulation (perhaps
with more MC realizations), which is exactly what this paper
strove to avoid.

• Approaches are available to obtain failure probability results
without having to run as many simulations as in a crude Monte
Carlo simulation. One such approach may be to follow the work
of Hu and Ching (2015a), Hu and Ching (2015b) and Ching
et al. (2017) by using the independent failure surface concept,
but it still requires substantial work with RFEM to calibrate the
appropriate number of independent failure surfaces. However,
an alternative is to develop a so-called surrogate model (i.e., re-
sponse surface model) to represent the implicit performance or
limit state function (Al-Bittar and Soubra 2013; Al-Bittar et al.
2018; Soubra et al. 2019). These methods include polynomial
chaos expansion, kriging-based Monte Carlo simulation, impor-
tance sampling, and so on (Al-Bittar and Soubra 2014b; Guo
et al. 2019; Guo and Dias 2020). Some of these methods have
been used successfully for 2D problems and are finding their
way toward 3D applications (El Haj et al. 2019; El Haj and
Soubra 2020; Zhou et al. 2020). However, application to 3D
problems such as the bearing capacity of square footings in this
paper poses a great challenge due to the very high dimensional
issue (i.e., 3,200 × 8 random variables). Because the aim of this
paper was to develop a practical method that can be used easily
by engineers, the development of a metamodel was beyond the
scope of this paper.

Conclusions

The paper investigated the reliability (or probability of failure) with
respect to the bearing capacity of square footings on spatially vary-
ing purely cohesive soils. Theoretical predictions of the variability
of bearing capacity were developed based on local averaging theory
and a geometric average model. The analytical predictions of the
mean, variance, and probability of failure were found to be in good
agreement with RFEM simulations. In both simulations and theo-
retical predictions, three-dimensional random field models were
used to simulate soil spatial variability. In the simulations, 3D
finite-element models were used to simulate the bearing failures
of rough rigid square footings founded on clay. The results indi-
cated that an equivalent Prandtl equation [Eq. (3)] can be used
to predict the two statistical moments and the probability of failure
of bearing capacity by using geometric averages of soil properties
in the equation.

Based on the current investigation, the following conclusions
may be drawn:
1. The degree of spatial averaging or variance reduction is larger in

three dimensions than it is in two dimensions, and this helps to
explain the different observations for the mean response in three
dimensions and two dimensions. In addition, the theoretical der-
ivations help to bound the numerical solutions. However, theweak-
est path cannot be represented using the theoretical prediction.

2. An averaging domain of w × 4w × 4w (where w ¼ B=2, i.e., the
active wedge zone depth for a frictionless soil) was found to be

appropriate for taking the geometric averages under the square
footings for the theoretical solution. The size of this domain is
particularly relevant for the theoretical variance estimation.

3. The theoretical solution, using a fixed averaging domain size,
was shown to provide reasonably accurate predictions for prac-
tical ranges of COVs. This is thought to be because the size of
the averaging domain is related closely to the mechanical influ-
ence domain for bearing capacity problems and dominantly is
determined by the traditional Prandtl failure mechanism for a
given footing width. However, a larger averaging domain of size
w × 5w × 5w was found to be slightly better for small and large
values of SOFs.

4. The analytical predictions (mean, variance, and probability of
failure) based on the theoretical solution can be used satisfac-
torily for the reliability-based ultimate limit state design of
square footings with soil variability parameters of practical in-
terests (i.e., COV < 1.0). Probability of failure graphs (together
with confidence intervals) are provided as a function of the tradi-
tional factor of safety for various values of COV and SOF
(because B ¼ 1.0 m in this paper, the probability results gener-
ally apply to nondimensionalised SOF=B), to facilitate their use
by practicing engineers.
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Notation

The following symbols are used in this paper:
B = footing width;
cu = undrained shear strength;
c̄u = effective undrained shear strength, i.e., taken as

geometric average in this study;
cju = cu for realization j when SOF is very large;
D = averaging domain size;
E = Young’s modulus;

E½·� = expectation operator;
F = factor of safety;
i = element number in discretized averaging domain;

i, j = realization number in Monte Carlo simulations;
L = footing length;
La = actual vertical load on footing per unit area;

Lx, Ly, Lz = averaging dimensions in three coordinate
directions;

Mc = stochastic bearing capacity factor;
Mi

c = stochastic bearing capacity factor for ith realization;
M1

c = stochastic bearing capacity factor for FE
discretization level 1;

M2
c = stochastic bearing capacity factor for FE

discretization level 2;
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mcu =median of cu;
N = number of Monte Carlo realizations;
Nc = traditional/deterministic bearing capacity factor for

strip footing;
N 0

c = deterministic bearing capacity factor for square
footing;

N 01
c = deterministic bearing capacity factor for FE

discretization level 1;
N 02

c = deterministic bearing capacity factor for FE
discretization level 2;

n = number of non-overlapping rectangular elements
below footing;

P½·� = probability of an event;
p = χ2 goodness of fit test probability;
pf = probability of failure;
Qf = sum of nodal reaction forces;
qf = ultimate bearing stress;
qdf = deterministic ultimate bearing stress based on mean

property value;
qif = stochastic bearing capacity for ith realization;
S̄a = S̄aln cu ;

Sln cuðxÞ = standard normal random field (ln cu);
S̄aln cu = arithmetic average of Sln cuðxÞ over domain D;

sc = shape factor;
vc = coefficient of variation (COV);
w = active wedge zone depth in strip footing failure

mechanism;
x; x 0 = spatial points;

x, y, z = coordinate directions;
xi = ith element location in space;
Φ = cumulative normal distribution function;
γðDÞ ¼ γðLx;Ly;LzÞ = variance reduction function

over averaging domain D;
γðLxÞ, γðLyÞ = variance functions used in

calculating γðDÞ;
γxðLyÞ, γyðLxÞ = variance functions used in

calculating γðDÞ;
θcu = scale of fluctuation of cu;
θh = scale of fluctuation in horizontal direction;

θhln cu = scale of fluctuation of ln cu in horizontal direction;
θln cu = scale of fluctuation of ln cu;
θv = scale of fluctuation in vertical direction;

θvln cu = scale of fluctuation of ln cu in vertical direction;
θyx, θxy = scale of fluctuation used in calculating γðDÞ;

μ =mean;
μMc

=mean of Mc;
μlnMc

=mean of lnMc;
μcu =mean shear strength;

μln cu =mean of ln cu;
μc̄u =mean of effective undrained shear strength;
μqf =mean of ultimate bearing stress;

μln qf =mean of logarithmic ultimate bearing stress;
ν = Poisson’s ratio;

σcu = standard deviation of cu;
σc̄u = standard deviation of effective undrained shear

strength;
σln cu = standard deviation of ln cu;
σlnMc

= standard deviation of lnMc;
σln qf = standard deviation of logarithmic ultimate bearing

stress;

σMc
= standard deviation of Mc;

σqf = standard deviation of ultimate bearing stress;
σ = standard deviation;

τ ¼ x − x 0 = separation distance vector between two spatial
points x and x 0;

τ1; τ2; τ3 = separation distances in three coordinate directions;
and

ϕ = friction angle in frictional soil.
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